PHYSICS I: MATHEMATICAL ANALYSIS I.
PROBLEMS 1

1. If \(f(x) = x^2 - 3x + 2, \) find \(f(0), f(x^2), f(x + 1) \). For what values of \(x \) does \(f(x) = 0 \)?
For what values of \(x \) does \(f(2x) = 0 \)?

2. Find the inverse of each of the functions:
 \begin{align*}
 (a) \quad & f(x) = 3x + 4, \quad \text{all real } x; \\
 (b) \quad & f(x) = 2x + x^2, \quad 0 < x < 1.
 \end{align*}

3. Are the following functions even, odd or neither?
 \begin{align*}
 (a) \quad & x^3 + 2 \sin x; \quad (b) \quad (1 + x^4)^{1/2} \cos 3x; \\
 (c) \quad & x + |x|; \quad (d) \quad \sin^2 x.
 \end{align*}

4. Evaluate the following limits:
 \begin{align*}
 (a) \lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 1}; \quad & (b) \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}.
 \end{align*}

5. Evaluate the limits:
 \begin{align*}
 (a) \lim_{x \to \infty} x \sin \left(\frac{1}{x} \right); \quad & (b) \lim_{x \to 0} \frac{x^3 + 2}{x^3 + x - 2}.
 \end{align*}
Hint for (b): Either use L'Hôpital's Rule or put \(x = 1 + h \) and use the binomial expansion.

Starred Question

6a. Given the definitions (from the lectures) of the hyperbolic functions
 \[
 \cosh x = \frac{e^x + e^{-x}}{2}, \quad \sinh x = \frac{e^x - e^{-x}}{2}, \quad \tanh x = \frac{\sinh x}{\cosh x}
 \]
show that
 \begin{enumerate}
 \item \(\cosh^2 x - \sinh^2 x = 1 \),
 \item \(\cosh^2 x + \sinh^2 x = \cosh 2x \),
 \item \(\sinh(x_1 + x_2) = \sinh x_1 \cosh x_2 + \sinh x_2 \cosh x_1 \),
 \item \(\frac{d}{dx} \tanh x = \text{sech}^2 x \) \quad (\text{sech} x = \frac{1}{\cosh x}).
 \end{enumerate}
Note the differences in the signs in 1) and 2) from the trigonometric cases.
PHYSICS 1: MATHEMATICAL ANALYSIS I.
PROBLEMS 2

1. Differentiate \(z^2 \cos(5x + 1); \) \(\ln(\sec x + \tan x); \) \(z/(z + 1). \)

2. Find \(dy/dx \) when (a) \(y^3 = x^3 - xy; \) (b) \(x^2y = \cos(xy). \)

3. Sketch the graphs of the following:
 (a) \(y = x + 1/x, \) \(x \neq 0; \)
 (b) \(y = \ln(1 - x^2), \) \(-1 < x < 1; \)
 (c) \(r = \alpha(1 - \cos \theta) \) where \(r \) and \(\theta \) are polar coordinates and \(\alpha \) is a positive constant.

Notes Plane polar co-ordinates \((r, \theta)\) are related to Cartesian co-ordinates \((x, y)\) by \(x = r \cos \theta \) and \(y = r \sin \theta; \) hence \(r^2 = x^2 + y^2 \) and \(\theta = \tan^{-1} \left(\frac{y}{x} \right). \)

4. Find the stationary points of the function \(f(x) = x^2(1 - x)^3 \) and determine their nature. Sketch the graph \(y = f(x). \)

5. If \(r(1 + \cos \theta) = 2, \) where \(r \) and \(\theta \) are plane polar coordinates, express the equation in terms of cartesian coordinates \((x, y); \) show that the graph is a parabola and sketch it.

STARRED PROBLEMS

6* Differentiate \(y = \sin^{-1}(x/(1 + x)) \) and \(y = \sec^{-1}(x). \)

7* Find where the function
\[
f(x) = \frac{2x^2 - 5x - 25}{x^2 + x - 2}
\]
is discontinuous. Find also the points where it is zero, its limiting values as \(x \to \pm \infty \) and its maximum and minima. Hence sketch its graph.
PHYSICS 1: MATHEMATICAL ANALYSIS I.
PROBLEMS 3

1. Integrate by parts:
 (a) $x^3 \sin x$;
 (b) $\tan^{-1} x$.

2. Evaluate the integrals:
 (a) $\int_0^1 (1+x^2)^{-3/2} \, dx$
 (b) $\int_0^\infty \left(1 + e^{2x}\right)^{-1} \, dx$
 (c) $\int_1^3 (2-x)^{-1} (x-1)^{-1/2} \, dx$.

 Hint: In (a) substitute $x = \tan \theta$; in (b) substitute $u = e^{2x}$; in (c) use the substitution $(x-1) = u^2$.

3. Which of the following integrals are convergent?
 (a) $\int_0^1 \ln x \, dx$;
 (b) $\int_0^2 (x-1)^{-2} \, dx$;

4. Show that
 $$\int x^k \ln x \, dx = \frac{x^{k+1}}{(k+1)^2} [(k+1) \ln x - 1] + c$$
 where c is a constant and $k \neq -1$.

STARRED PROBLEMS

5* Which of the following integrals are convergent?
 (a) $\int_1^\infty \ln x \, dx$;
 (b) $\int_0^\infty e^{-ax} \sin bx \, dx$, $(a > 0)$.

6* Integrate
 (a) $\frac{x^4}{x^2 + 1}$;
 (b) $\frac{1}{x \ln x}$
PHYSICS I: MATHEMATICAL ANALYSIS I

PROBLEMS 4

1. Put into partial fractions and hence find the indefinite integral of

\[f(x) = \frac{2x^2 - x + 2}{x(x - 1)(x + 1)} \]

2. By using the trigonometric formula \(\sin(A + B) + \sin(A - B) = 2 \sin A \cos B \) calculate the indefinite integral

\[I = \int \sin 3x \cos 5x \, dx \]

3. Recall from the lectures that the mean value \(\bar{f} \) of a function \(f(x) \) over an interval \(0 \leq x \leq a \) is given by

\[\bar{f} = \frac{1}{a} \int_0^a f(x) \, dx \]

Find the mean value of \(f(x) = \sin x \) in the interval \(0 \leq x \leq \pi \), and of \(f(x) = \sin^2 x \) in the interval \(0 \leq x \leq 2\pi \).

4. If

\[I_n = \int_0^{\pi/3} \sin^n x \, dx \]

where \(n \geq 0 \) is an integer, show that \(I_n = \frac{n-1}{n} I_{n-2} \), for \(n \geq 2 \). Hence show that

\[I_8 = \int_0^{\pi/3} \sin^8 x \, dx = \frac{35}{233} \pi \]

STARRED PROBLEMS

8* Calculate the length of the curve

\[y = \frac{x^3}{a^3} + \frac{a^2}{12x} \]

from \(x = a/2 \) to \(x = a \), where \(a \) is a positive constant.

6* If

\[I = \int_0^{\pi/2} \frac{\sin^{1/3} x}{\sin^{1/3} x + \cos^{1/3} x} \, dx \]

use the substitution \(x = \pi/2 - y \) to show that

\[I = \int_0^{\pi/2} \frac{\cos^{1/3} x}{\sin^{1/3} x + \cos^{1/3} x} \, dx \]

Hence show that \(I = \pi/4 \).
Recall from your notes that:

(i) Plane polar co-ordinates \((r, \theta)\) are related to Cartesian co-ordinates \((x, y)\) by \(x = r \cos \theta\) and \(y = r \sin \theta\) hence \(r^2 = x^2 + y^2\) and \(\theta = \tan^{-1} \left(\frac{y}{x}\right)\).

(ii) In Cartesian co-ordinates a small element of arc length \(ds\) is related to the small elements \(dx\) and \(dy\) by \((ds)^2 = (dx)^2 + (dy)^2\) (with an additional \((ds)^2\) in \(3D\)). In plane polar co-ordinates this converts to \((ds)^2 = (dr)^2 + r^2(d\theta)^2\).

(iii) Volume of revolution is \(\pi \int_a^b y^2\, dx\) whose surface area is \(2\pi \int_a^b y\, ds\).

1. Find the lengths of the following curves:
 (a) The catenary \(y = \cosh x\) from \(x = 0\) to \(x = 1\). [Answer: \(\text{sinh 1}\).]
 (b) The circular helix expressed in parametric form \(x = \cos t, y = \sin t\) and \(z = t\) from \(t = 0\) to \(t = 2\pi\). [Answer: \(2\sqrt{2}\pi\).]
 (c) The curve \(y = x^{3/2}\) from \((0, 0)\) to \((4, 8)\). [Answer: \(\frac{3}{2} \left(10^{3/2} - 1\right)\).]
 (d) One branch of the 4-cusped hypocycloid expressed in parametric form \(x = \cos^3 t, y = \sin^3 t\) from \(t = 0\) to \(t = \pi/2\). [Answer: \(3\pi/2\).]

2. Show that the area of one loop \((-\pi/4 \leq \theta \leq \pi/4)\) of the lemniscate \(r^2 = a^2 \cos 2\theta\) is \(a^2/2\).

3. Find the position of the centre of mass of a uniform thin wire in the form of a circular arc of radius \(a\), subtending an angle of \(2\gamma\) at the centre. [Answer: \(a \sin \gamma/\gamma\) from the origin.]

4. Find the area enclosed by the ellipse \((x/a)^2 + (y/b)^2 = 1\). Assuming this elliptical area to be of uniform density, find also the position of the centre of gravity of the part that lies in the first quadrant. [Answers: \(a\sqrt{ab}\) and \((4a/3\pi, 4b/3\pi)\).]

STARRED PROBLEMS

5* Show that \(8a\) is the total length of the closed curve called the cardioid (heart shape)

\[r = a(1 - \cos \theta). \]

6* Show that the length of one arch (\(0 \leq t \leq 2\pi\)) of the cycloid defined by

\[x = a(t - \sin t) \quad y = a(1 - \cos t) \]

is \(8a\). Show that the area of the surface obtained by a complete revolution of this arch about the \(x\)-axis is \(64\pi a^2/3\).
PHYSICS I: MATHEMATICAL ANALYSIS I.

PROBLEMS 6

1. Calculate \(\partial u / \partial x \) and \(\partial u / \partial y \) if \(u = e^x y - y^2 + 3x - 1 \).

2. Find the relation between the constants \(\alpha \) and \(\beta \) if the function \(u = \cos x \cos y \) satisfies Laplace's equation:
 \[
 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.
 \]

 Show also that the following function \(u(x, y) \) satisfies Laplace's equation:
 \[
 u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1.
 \]

3. If \(g = \tan^{-1}(y/x) \), calculate \(\partial g / \partial x \) and \(\partial g / \partial y \), and show that
 \[
 x \frac{\partial g}{\partial x} + y \frac{\partial g}{\partial y} = 0.
 \]

4. If \(u = x^2 + 3y^2 \) and \(x = s + t, y = 2s - t \), calculate \(\frac{\partial u}{\partial s} \) and \(\frac{\partial u}{\partial t} \) (i) by using the chain rule, and (ii) by first expressing \(u \) as a function of \(s \) and \(t \).

5. A closed box has variables sides of length \(x, y \) and \(z \) but a fixed volume \(V \). Show that the shape of the box is a cube when the surface area \(A \) is minimum. Note at a stationary point of a function of two variables \(u = u(x, y) \) the two partial derivatives \(\partial u / \partial x \) and \(\partial u / \partial y \) need to be zero simultaneously.

STARRED PROBLEMS

\(\star \) If \(u = x \ln(x^2 + y^2) - 2y \tan^{-1}(y/x) \), verify that
 \[
 x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u + 2x.
 \]

\(\star \) The equation of state of a gas, relating pressure \(p \), volume \(V \) and temperature \(T \), is \(f(p, V, T) = 0 \) and hence
 \[
 \frac{\partial f}{\partial p} dp + \frac{\partial f}{\partial V} dV + \frac{\partial f}{\partial T} dT = 0.
 \]

Show that
 \[
 \frac{\partial f}{\partial V} \left(\frac{\partial V}{\partial T} \right)_p = - \frac{\partial f}{\partial p} \frac{\partial V}{\partial T} + \frac{\partial f}{\partial T} \frac{\partial V}{\partial p},
 \]
 and obtain similar expressions for \(\partial f / \partial V \) and \(\partial f / \partial p \). Deduce that
 \[
 \frac{\partial f}{\partial T} \left(\frac{\partial V}{\partial T} \right)_T = \left. \frac{\partial^2 f}{\partial V \partial p} \right|_V = -1.
 \]

\(^1 \) In this problem we need not specify the function \(f \); it is left as an arbitrary function of the three independent variables \(p, V \) and \(T \) but for an ideal gas it would take the form \(f = pV = RT \). In fact, you can verify some of the above formulas using this relation.
1. If \(f \) and \(g \) are any twice-differentiable functions, use the chain rule, along with the new variables \(s = x + y \) and \(t = x + \frac{1}{2}y \), to show that
\[
V(x, y) = f(x + y) + g(x + \frac{1}{2}y)
\]
satisfies the partial differential equation
\[
V_{xx} - 3V_{xy} + 2V_{yy} = 0,
\]
where the suffixes denote partial derivatives.

2. If \(u = u(x, y) \) and \(x \) and \(y \) transform into two new variables \(s \) and \(t \) such that \(s = 2x^2 + y^2 \) and \(t = 3x^4 + y^2 \), show that
\[
u_s^2 + u_t^2 = \left(u_s^2 + u_t^2 \right) \left(x^2 + y^2 \right)^2.
\]

3. Are the following exact differentials? If so, of what functions?

 (i) \(e^y dx + x(e^x + 1) dy \)
 (ii) \((e^x + ye^y) dx + (e^x + xe^x + 1) dy \)

STARRED QUESTION

4* If \(u = u(x, y) \) and \(x \) and \(y \) are related to two new independent variables \(s \) and \(t \) by
\[
x = xf, \\
y = yf,
\]
use the chain rule to find \(\frac{\partial u}{\partial x} \) in terms of \(\frac{\partial u}{\partial s} \) and \(\frac{\partial u}{\partial y} \) in terms of \(\frac{\partial u}{\partial s} \) and \(\frac{\partial u}{\partial t} \). Solve this to show that
\[
\frac{\partial u}{\partial x} = s \frac{\partial u}{\partial s} + t \frac{\partial u}{\partial t},
\]
and
\[
\frac{\partial u}{\partial y} = \left(s^2 - t^2 \right) \left(\frac{1}{s} \frac{\partial u}{\partial s} - \frac{1}{t} \frac{\partial u}{\partial t} \right).
\]
1. Use the ratio test to determine whether the following two series are convergent:

\[\sum_{n=0}^{\infty} \frac{1}{(n+1)!} \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{(3-4i)^n}{n!}. \]

2. Show that \(y = \tan x \) satisfies the equation

\[\frac{dy}{dx} = 1 + y^2. \]

By repeated differentiation of this result, find the higher derivatives that are required to determine the first three non-zero terms of the Maclaurin series for \(\tan x \).

3. Show that there are two stationary values of the function

\[u(x, y) = \frac{x^2 + y^2 + 2x + 1}{x + y}. \]

By considering the second partial derivatives \(u_{xx}, u_{yy} \) and \(u_{xy} \), show that one is a maximum and the other is a minimum.

4. Sketch contours (curves of constant \(u \)) for the function \(u = xy(x + y - 1) \) and indicate regions where \(u \) is zero, positive, and negative respectively. Locate the stationary points of the function and deduce their nature from the contour diagram. Now use the standard method of calculating the sign of \((u_{xy} - u_{xx}u_{yy})\) etc at each stationary point to confirm your findings.

STARRED PROBLEM

5* Show that the function

\[u(x, y) = x^4 + 4x^2y^3 - 2x^2 + 2y^2 - 1 \]

has three stationary points, two of which are minima, the other being a saddle.
1) \(f(0) = 2; \quad f(x) = x^4 - 3x^2 + 2 \)
 \(f(x+1) = (x+1)^4 - 3(x+1)^2 + 2 = x^4 - x \)
 \(f(x) = 0 \) or roots of \(x^2 - 3x + 2 = 0 \), namely \(x = 1 \) and 2
 so \(f(x) = 0 \) at \(x = \frac{1}{2} \) and 1.

2) a) \(y = 5x + 4 \implies x = \frac{1}{5}(y-4) \)
 Hence \(f^{-1}(x) = \frac{1}{5}(y-4) \) for all \(x \).

b) \(y = 2x + x^2 \quad (0 < x < 1) \) so the range is \(0 < y < 3 \).
 Solve the quadratic in \(x \), i.e. \(x^2 + 2x - y = 0 \),
 which gives \(x = -1 \pm \sqrt{1+y} \). Note that the
 2nd root \(x = -1 - \sqrt{1+y} \) is negative and out
 of the domain \(0 < x < 1 \). We reject this root,
 leaving \(f^{-1}(x) = -1 + \sqrt{1+y} \) for \(0 < x < 3 \).

3) (a) Neither (b) Even (c) Neither (d) Odd

4) a) \(\lim_{x \to 0} \frac{x^4}{x^2} = \lim_{x \to 0} \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}} = 1 \)
 \(\lim_{x \to 0} \frac{(1+x)^{1/2} - (1-x)^{1/2}}{x} = \lim_{x \to 0} \frac{1}{x} \left[(1 + \frac{1}{x^2} + \cdots) - (1 - \frac{1}{x^2} - \cdots) \right] \)
 \(= 1 \) Binomial Theorem.

b) \(\lim_{x \to 0} x \sin \left(\frac{1}{x} \right) = \lim_{y \to 0} (\sin y) = 1 \)
 \(y \to 0 \)

\(\lim_{x \to 1} \frac{x^4 + x - 2}{x^4 + x^2 - 2} = \lim_{x \to 1} \frac{9x^4 + 1}{4x^4 + 1} = \frac{10}{5} = 2 \)

Alternatively, \(\left[x^4 + x - 2 \right] \) Rule gives,

\(\lim_{x \to 1} \frac{x^4 + x - 2}{x^4 + x^2 - 2} = \lim_{x \to 1} \frac{9x^4 + 1}{4x^4 + 1} = \frac{10}{5} = 2 \).
Solutions to Sheet 2

1. (i) \(\frac{dy}{dx} = 3x^2 \cos(5x+1) - 5x^3 \sin(5x+1) \) \quad \text{(Product Rule)}

(ii) \(\frac{dy}{dx} = \sec(x) \tan(x) + x \sec(x) \) \quad \text{(Note: \(\frac{d}{dx} \sec(x) = \sec(x) \tan(x) \))}

(iii) \(\frac{dy}{dx} = \frac{x+1-x}{(x+1)^2} = \frac{1}{x+1} \) \quad \text{(Quotient Rule)}

2. (a) \(y^2 = x^3 + yx \)
 Hence \(2y \frac{dy}{dx} = 3x^2 - y + x \frac{dy}{dx} \)

(b) \(x e^y = \cos(xy) \)
 LHS: \(\frac{d}{dx} (xe^y) = e^y + x \frac{dy}{dx} e^y \)
 RHS: \(\frac{d}{dx} (\cos(xy)) = -\sin(xy)(y + x \frac{dy}{dx}) \)

\(\therefore \frac{d}{dx} (xe^y + x \sin(xy)) = -(y \sin(xy) + e^y) \)

so \(\frac{dy}{dx} = -\frac{y \sin(xy) + e^y}{x(e^y + \sin(xy))} \)

3. (a)

4. Stationary pt when \(f'' = 0 \):
 \(f'(x) = 2x(1-x)^3 - 3x^2(1-x)^2 \)
 \(x = 0 \) (min), \(x = 1 \) (inflexion), \(x = \frac{7}{5} \) (max)

5. \(r(1+e^x) = 2 \Rightarrow r+x = 2 \)
 because \(x = \cos \theta \), hence
 \(r = (2-x)^2 \)
 \(x^2 y'' = (2-x)^2 \)
 \(y'' = 4(1-x) \) \quad \text{(Parabola)}
\[1. \quad J \int x^3 \sin x \, dx = - \frac{1}{3} x^3 \cos x + 3 \int x^2 \cos x \, dx \\
= - \frac{1}{3} x^3 \cos x + 3 \int x^2 \cos x - 6 \int x \sin x \, dx \\
= - \frac{1}{3} x^3 \cos x + 3 x^2 \sin x - 6 \int x \sin x \, dx \\
= - \frac{1}{3} x^3 \cos x + 3 x^2 \sin x + 6 \int x \cos x \, dx \\
= - \frac{1}{3} x^3 \cos x + 3 x^2 \sin x + 6 \sin x + c \\
\]

\[4. \quad J \frac{\tan^{-1} x}{x} \, dx = \tan^{-1} x - \int \frac{x}{1 + x^2} \, dx \\
= \tan^{-1} x - \int \frac{dx}{1 + x^2} = \tan^{-1} x - \ln(1 + x^2) + c. \]

\[2. \quad \text{Use } u = \tan^{-1} x \]
\[J \frac{du}{(1 + u^2) u} = \int \frac{1}{(1 + u^2) u} \, du = \int u \, dv = \int \frac{1}{1 + u^2} \, du \\
= \frac{1}{2} \left[\ln 1 - \ln \frac{1}{u} \right] = \frac{1}{2} \ln 2. \]

\[3. \quad \int \frac{dx}{x(\ln x - 1)^2} = \int \frac{2x \, dx}{(1 - u^2)x} = \int \frac{dx}{1 - u^2} = \int \frac{1}{1 - u} \, du \\
= - \left[\ln \left| \frac{1 + u}{1 - u} \right| \right]_0^1 = \ln \frac{2}{\sqrt{2}} = \ln 2. \]

\[5. \quad \text{Let } x = e^{\theta} \quad \text{and } \text{then } dx = e^{\theta} \, d\theta \]
\[J \int e^{\theta} d\theta = [1 \times (e^\theta - 1)]_0^\infty = 1 - e \cdot (e^\infty - 1) = e - 1 - e \cdot \infty \\
\text{The integral does not converge} \quad \text{as } e \to \infty. \]

\[6. \quad J \frac{x \, dx}{(x + 1)^2} = \frac{1}{2} \int \frac{dx}{x + 1} = \frac{1}{2} \ln |x + 1| + c \\
= \frac{1}{2} \left[\ln (x + 1) - \frac{1}{x + 1} \right] + c = (x + 1)^{-1} \left[(x + 1) \ln x - 1 \right] x^{x_0} + c. \]
1. \(f(x) = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \Rightarrow A(x-1)(x+1) + Bx(x+1) + Cx(x-1) = 2x^2 - x + 2. \)

\((A, B, C) = (-2, \frac{9}{6}, \frac{5}{6}) \). Hence

\[\int f(x) \, dx = \int \left(\frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1} \right) \, dx = -2 \ln |x| + \frac{9}{2} \ln |x-1| + \frac{5}{6} \ln |x+1| + c. \]

2. \(\sin^3 x \cos x = \frac{1}{4} \left[\sin 3x - 3 \sin x \right] \) from trig. formula

\(I = \frac{1}{4} \int (\sin 3x - 3 \sin x) \, dx = -\frac{1}{12} \cos 3x + \frac{3}{4} \cos 2x + c \)

3. \(\sin x = \frac{1}{2} \int_0^x \sin u \, du = -\frac{1}{2} \left[\cos x \right]_0^x = -\frac{1}{2} [1 - 1] = \frac{1}{2} \pi \)

\(\sin^2 x = \frac{1}{2} \int_0^{2x} \sin^2 u \, du = \frac{1}{4} \pi \int_0^2 (1 - \cos 2u) \, du = \frac{1}{2} \)

4. \(J_n = \int_0^{\pi/2} \sin^n x \, dx = -\int_0^{\pi/2} \sin^{n-2} x \cos x \, dx \)

\[= -\left[\sin^{n-2} x \cos x \right]_0^{\pi/2} + (n-2) \int_0^{\pi/2} \sin^{n-2} x \cos^2 x \, dx \quad n \geq 1 \]

\[= 0 + (n-2) \int_0^{\pi/2} \sin^{n-2} x \cos^n x \, dx \]

\[= (n-2) \int_{n-2}^{n-1} \]

Solve for \(I_n : \quad n I_n = (n-1) I_{n-2} \quad n \geq 2 \)

\(I_1 = \frac{1}{1} I_0 = \frac{3}{2} \). \(I_2 = \frac{3}{4} \). \(I_3 = \frac{3}{8} \). \(I_4 = \frac{3}{6} \). \(I_5 = \frac{3}{8} \). \(I_6 = \frac{3}{10} \). \(I_7 = \frac{3}{12} \). \(I_8 = \frac{3}{14} \). \(I_9 = \frac{3}{16} \).

\(I_k = \frac{3}{2k+1} \).

\(I_0 = \int_0^{\pi/2} \sin x \, dx = \pi/2 \).

\(I_k = \frac{3}{2k+1} \).
7) a) \(y' = \sin x \)
\[S = \int_0^1 (1 + \sin^2 x)'^2 \, dx = \int_0^1 \cos x \, dx = \sin 1 \]

b) \(x = \cos t, y = \sin t, z = t \)
\[(ds)^2 = [(-\sin t \, dt)^2 + (\cos t \, dt)^2 + (dt)^2] = \int_0^2 \sqrt{2} \, dt = 2\sqrt{2} \pi \]

c) \(y = x^{4/3} \)
\[S = \int_0^1 \left(1 + \frac{4}{3} \, y \right)^{1/3} \, dy = \frac{3}{5} (10^{4/3} - 1) \]

d) \(u = \cos^2 t, y = \sin t \)
\[S = \frac{1}{2} \int_0^{\pi/2} \cos^2 t \, dt = \frac{1}{2} \int_0^{\pi/2} \cos^2 t \, dt = \frac{\pi}{4} \]

8) Area \(= \frac{1}{2} \int_{-\pi/4}^{\pi/4} \cos 2 \theta \, d\theta = \frac{\pi}{2} \)

9) \[\bar{x} = \frac{\int x \, p \, ds}{\int p \, ds} = \frac{\int x \, p \, ds}{\int p \, ds} \]

10) Area of ellipse \(= \pi \int_0^a y \, dx \)
\[= 4\pi \int_0^a (1 - \frac{x^2}{a^2}) \, dx \]

Put \(x = a \cos \theta \)
\[A = -4a \int_0^\pi \sin^2 \theta \, d\theta = \pi a^2 \]

11) \(\rho \bar{A} = \int x y \, dx \)
\[= \int_0^\pi \sin^2 \theta \, d\theta \]

Mass \(\bar{m} = \rho \bar{A} \)
\[\bar{A} = -a \int_0^\pi \cos \sin^2 \theta \, d\theta = \int_0^\pi \frac{a^{2/3}}{2} \]

Note: \(\bar{A} \) is the area of the 1st quadrant. Hence,
\[\bar{A} = \frac{\pi a^2}{3} \]

By symmetry, \(y = \frac{\pi a^2}{2} \).
1) \(\frac{\partial u}{\partial y} = 8xy + 3 \), \(\frac{\partial u}{\partial y} = 4x^2 - 2y \\
\)

2) \(u = e^{xy} \cos y \), \(\frac{\partial u}{\partial x} = \alpha e^{xy} \cos y \), \(\frac{\partial u}{\partial y} = \beta e^{xy} \sin y \), \(\frac{\partial^2 u}{\partial y^2} = -\beta^2 e^{xy} \cos y \)

\(\alpha^2 - \beta^2 = 0 \) to satisfy Laplace's eqn. \(u = x \pm \beta y \)

3) \(u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1 \)
\(\frac{\partial u}{\partial x} = 3x^2 - 3y^2 + 6x \), \(\frac{\partial u}{\partial y} = 6x + 6 \) \(\frac{\partial^2 u}{\partial y^2} = -6x - 6 \)

Sum is zero.

3) \(f = \tan^{-1} (\frac{y}{x}) \):
\(\frac{\partial f}{\partial x} = \frac{\frac{1}{1+(\frac{y}{x})^2} \cdot \frac{y}{x}}{1+(\frac{y}{x})^2} = \frac{y}{x^2+y^2} \)
\(\frac{\partial f}{\partial y} = \frac{\frac{1}{1+(\frac{y}{x})^2} \cdot 1}{1+(\frac{y}{x})^2} = \frac{x}{x^2+y^2} \)

Hence \(\frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = 0 \)

4) i) Chain Rule:
\(\frac{\partial u}{\partial x} = \frac{3u}{x} + \frac{2y}{y} = \frac{3u}{x} + \frac{2y}{y} \)
\(\frac{\partial u}{\partial y} = 2x + 2 \frac{\partial u}{\partial y} \)
\(v = 2x + 2 \frac{\partial u}{\partial y} \)
\(v = 2x + 2 \frac{\partial u}{\partial y} \)
\(v = 2x + 2 \frac{\partial u}{\partial y} \)
\(v = 2x + 2 \frac{\partial u}{\partial y} \)

Now \(u = x^2 + y^2 = (x+y)^2 + 3(2x+y)^2 = x^2 + 2st + t^2 \)
\(+ 3(8s^2 - 12st + 6st^2 - 6t^2) \)

So \(\frac{\partial u}{\partial x} = 2s + 2t + 3 (24x^2 - 24xt + 6t^2) \) Same as (4)

Do the same for \(\frac{\partial u}{\partial y} = 2t + 2s + 3 (24y^2 - 24yt + 6y^2) \)

5) \(V = xy \) \((V \ fixed) \) \(A = 2(xy + y + x) \)

Eliminate \(x \) using \(x = \frac{V}{y} \).

\(\frac{\partial A}{\partial x} = 2 \left(\frac{y}{x} + \frac{x}{x} \right) \)
\(\frac{\partial A}{\partial y} = 2 \left(\frac{2y}{x} - \frac{y}{y} \right) \)

For \(A_x = 0 \) and \(A_y = 0 \) together we have
\(V = x \frac{y}{x} + y \frac{x}{y} \) with \(V = xy \). Only solutions
\(x = y = z = \frac{V}{x} \). Minimum by inspection.
1) \[V(x, y) = f(x, y) + g(x + ty) \]
\[u_x = f_x + g_x \]
\[u_y = f_y + g_y \]
\[v = f(u) + g(v) \]
\[\frac{\partial V}{\partial u} = \frac{\partial f}{\partial u} + \frac{\partial g}{\partial u} = f_x + g_x \]
\[\frac{\partial V}{\partial v} = \frac{\partial f}{\partial v} + \frac{\partial g}{\partial v} = f_y + g_y \]

Note that 1) implies that the derivative operator \(\frac{\partial}{\partial u} \)

can be written as
\[\frac{\partial}{\partial u} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \]

and similarly
\[\frac{\partial}{\partial v} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \]

2) \[s = \frac{u}{x^2 + y^2} \]
\[t = \frac{y}{x^2 + y^2} \]
\[\frac{\partial s}{\partial u} = -\frac{2xy}{(x^2 + y^2)^2} \]
\[\frac{\partial s}{\partial y} = \frac{2x}{(x^2 + y^2)^2} \]

Chain rule:
\[u_x = u_s \frac{\partial s}{\partial u} + u_t \frac{\partial t}{\partial u} = [u_s (y^2 - x^2) - 2xy u_t] (x^2 + y^2)^{-2} \]
\[u_y = u_s \frac{\partial s}{\partial u} + u_t \frac{\partial t}{\partial y} = [-2xy u_s + (x^2 - y^2) u_t] (x^2 + y^2)^{-2} \]

\[(u_s^2 + u_t^2)(x^2 + y^2)^4 = u_s^2 (x^2 + y^2)^2 + u_t^2 (x^2 + y^2)^2 \]

3) Write the differential as \(P \, dx + Q \, dy \).

To be able to write this as \(df \) and find \(f(x, y) \)

we need (notes) \(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \).

i) \(P = e^x \), \(Q = x(e^y + 1) \)

Clearly \(\frac{\partial P}{\partial y} + \frac{\partial Q}{\partial x} \) No!

ii) \(P = e^x + ye^x \), \(Q = e^x + e^y + 1 \)

\[\frac{\partial P}{\partial y} = e^x + e^x, \quad \frac{\partial Q}{\partial x} = e^x + e^y. \]

Yes! \(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \)

\[f = xe^x + ye^x + 1 \]
1) \[u_n = \frac{1}{(n+1)!} \implies \lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lim_{n \to \infty} \frac{1}{(n+1)n} = 0. \text{ Converges.} \]

2) \[u_n = \frac{2(-4)^n}{n!} \implies \lim_{n \to \infty} \frac{u_n}{u_{n+1}} = \lim_{n \to \infty} \frac{2(-4)^n}{(n+1)n} \left(\frac{3-4}{1-(3/2)} \right) = \lim_{n \to \infty} \frac{2}{n+1} = 0. \text{ Converges.} \]

\[\text{As } \frac{dn}{dx} = 4x^3 + 3x \text{, we need } \Delta x \to 0 \text{ as } n \to \infty. \]

Differentiate the MRF equation to find: \[y'' = 2yy'; \quad y''' = 2(2yy'' + y'y). \]

At \(x = 0 \): \(y = 0, \ y' = 1, \ y'' = 0, \ y''' = 2, \ y^{(4)} = 0 \), \(y^{(6)} = 1 \).

\[y(x) = y(0) + y'(0)x + \frac{y''(0)}{2!} x^2 + \frac{y'''(0)}{3!} x^3 + \frac{y^{(4)}(0)}{4!} x^4 + \ldots = 0 + x + 0 + \frac{2}{6} x^3 + 0 + \ldots \]

\[y = x + \frac{x^3}{3} + \frac{x^5}{5!} + \ldots \]

3) \[u_n = \frac{x^3 + 2x^2 + 2x + 1}{(x+y)^2} \quad \text{and } \quad u_y = \frac{2yx + y^2 - x - 1}{(x+y)^2} \]

\[u_x = u_y = 0 \text{ at } x = y = 0. \]

Together we have \(x = 0, \ y = 0, \) and \(x = 0, \ y = 1. \) Two points \((0,0), (0,1)\).

After a bit of work: \[u_{xx} = \frac{6y^2 - 6xy + x}{(x+y)^3}, \quad u_{yy} = \frac{4x^2 + 4xy + 1}{(x+y)^3} \]

\[u_{xy} = \frac{2(x^2 - 2xy + y)}{(x+y)^3} \]

\[(-1,0): \ u_{xx} = -2, \ u_{yy} = -2, \ u_{xy} = 0 \text{ MAX.} \]

\[(0,1): \ u_{xx} = 1, \ u_{yy} = 2, \ u_{xy} = 0 \text{ MIN.} \]

(Note: At the max \(u = 0 \) while at the min \(u = 2. \) How can this be? Consider that \(u \) becomes infinite along the line \(y = x. \))

Signs in circles refer to the sign of \(u. \)

\[u_x = y{(2xy - 1)}, \quad u_y = x{(x + y - 1)} \]

Shear in set at \((0,0), (0,1), (1,0) \) at \((1,1)\).

Consider changes of sign in \(u \) around each point. Clearly \((0,0), (0,1), (1,0) \) are SADDLES.

Check \(u_{xx}^2 - u_{xy}^2 > 0, \) This is 1 for three points, and \(-1 \) for \((1,0) \). This is MINIMUM as \(u_{xx} > 0 \) here.