Quantum Physics: Numbers and Formulae

Please bear in mind that learning physics is NOT about rote memorisation. It will do you no harm to learn the contents of this handout, but it will not guarantee that you pass the exam, or even help all that much. Much more important is to appreciate the interconnected group of ideas and experiments that led to the equations, understand their physical meanings and relationships, know how to work through the main derivations, and practise plenty of problems.

Units and sizes

<table>
<thead>
<tr>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 nm</td>
<td>10^{-9} m</td>
</tr>
<tr>
<td>1 Å</td>
<td>10^{-10} m</td>
</tr>
<tr>
<td>1 eV</td>
<td>1.6×10^{-19} J</td>
</tr>
<tr>
<td>Distance between air molecules</td>
<td>few nm</td>
</tr>
<tr>
<td>Distance between atoms in molecules/solids</td>
<td>few Å</td>
</tr>
<tr>
<td>Radius of atom</td>
<td>~ 1 Å</td>
</tr>
<tr>
<td>Radius of nucleus</td>
<td>$\sim 10^{-15}$ m</td>
</tr>
<tr>
<td>Typical thermal energy</td>
<td>$\sim k_B T$ (1/2 $k_B T$ per degree of freedom)</td>
</tr>
<tr>
<td>Chemical bond energy</td>
<td>\sim few eV</td>
</tr>
<tr>
<td>Atomic ionisation energy</td>
<td>\sim few eV</td>
</tr>
<tr>
<td>Work function</td>
<td>\sim few eV</td>
</tr>
</tbody>
</table>

Equations from other courses

Ideal gas law

$$ PV = Nk_B T $$

Newtonian mechanics

$$ E = \frac{1}{2}mv^2 + V(x) = \frac{p^2}{2m} + V(x) $$
$$ F = -\frac{dV}{dx} $$

Relativistic energy and momentum

$$ E = m\gamma c^2 $$
$$ p = m\gamma v $$
$$ E^2 = p^2 c^2 + m^2 c^4 $$
($$ E^2 = p^2 c^2 $$ if $$ m = 0 $$)
Waves

Travelling wave moving right:
\[\psi(x, t) = a \cos(kx - \omega t + \phi) = \text{Re} \left(A e^{i(kx - \omega t)} \right) \quad (A = ae^{i\phi}) \]

Travelling wave moving left:
\[\psi(x, t) = a \cos(-kx - \omega t + \phi) = \text{Re} \left(A e^{i(-kx - \omega t)} \right) \quad (A = ae^{i\phi}) \]

Wave vector and angular frequency:
\[k = \frac{2\pi}{\lambda} \quad \omega = 2\pi \nu \]

Intensity:
\[I(x) = \text{square of max displacement at } x \]

Intensity of travelling wave:
\[I(x) = a^2 = |A|^2 \quad \text{(independent of } x) \]

Phase and group velocities:
\[v_p = \frac{\omega}{k} \quad v_g = \frac{d\omega}{dk} \]

Equations from this course

Dispersion relations

light: \[\omega = c k \]
non-relativistic massive particle: \[\omega = \frac{\hbar k^2}{2m} \]

Photoelectric effect
\[eV_0 = h\nu - W \]
\[\frac{1}{2}mv_{\text{max}}^2 = eV_0 \]

Planck and de Broglie equations
\[E = h\nu = \hbar \omega \]
\[p = \frac{h}{\lambda} = \hbar k \]

(Note: these apply to all particles — massive and massless, relativistic and non-relativistic.)
For photons only

\[E = pc = \frac{hc}{\lambda} = hck \]

For non-relativistic massive particles only

\[E = \frac{p^2}{2m} = \frac{h^2}{2m\lambda^2} = \frac{h^2k^2}{2m} \]

Probability densities

If \(f(x) \) is a probability density function (pdf), then

\[f(x) \geq 0 \]

\[\int_{-\infty}^{\infty} f(x) \, dx = 1 \]

\[f(x) \, dx = \left\{ \begin{array}{l} \text{probability that} \ x \ \text{lies in the range} \ x \ \text{to} \ x + dx. \end{array} \right. \]

Expected values of \(x \) and \(x^2 \):

\[\langle x \rangle = \int_{-\infty}^{\infty} x f(x) \, dx \]

\[\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 f(x) \, dx \]

The root-mean-square (rms) uncertainty \(\Delta x \) (also known as the standard deviation of \(f(x) \)) is defined by:

\[(\Delta x)^2 = \langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2 \]

Probabilities in QM

If \(\psi(x) = \int A(k)e^{ikx} \, dk \) is a QM wave function (or rather a snapshot of the QM wave function \(\psi(x, t) \) at some fixed time \(t \)), then

\[|\psi(x)|^2 \, dx \propto \left\{ \begin{array}{l} \text{probability that a measurement of the particle’s position yields a} \end{array} \right. \]

\[\text{result in the range} \ x \ \text{to} \ x + dx. \]

\[|A(k)|^2 \, dk \propto \left\{ \begin{array}{l} \text{probability that a measurement of the particle’s momentum yields} \end{array} \right. \]

\[\text{a result in the range} \ \hbar k \ \text{to} \ \hbar (k + dk). \]

If \(\psi(x) \) is normalised,

\[\int |\psi(x)|^2 \, dx = 1, \]

then \(|\psi(x)|^2 \) is a pdf.
Bandwidth theorem

For any function $\psi(x) = \int A(k)e^{ikx}dk$,

$$\Delta x \Delta k \geq \frac{1}{2},$$

where Δx is the rms width of $|\psi(x)|^2$ and Δk is the rms width of $|A(k)|^2$.

For any function $\psi(t) = \int A(\omega)e^{i\omega t}d\omega$,

$$\Delta t \Delta \omega \geq \frac{1}{2},$$

where Δt is the rms width of $|\psi(t)|^2$ and $\Delta \omega$ is the rms width of $|A(\omega)|^2$.

Uncertainty principle

$$\Delta x \Delta p \geq \frac{\hbar}{2}, \quad \Delta t \Delta E \geq \frac{\hbar}{2}$$

Time-dependent Schrödinger equation

$$-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x,t)}{\partial x^2} + V(x)\psi(x,t) = i\hbar \frac{\partial \psi(x,t)}{\partial t}$$

Time-independent Schrödinger equation

$$-\frac{\hbar^2}{2m} \frac{d^2 \phi_n(x)}{dx^2} + V(x)\phi_n(x) = E_n\phi_n(x)$$

Simple harmonic oscillator

The energy levels of a quantum mechanical simple harmonic oscillator with spring constant s and mass m are

$$E_n = \left(n + \frac{1}{2}\right) \hbar \omega_{cl}, \quad n = 0, 1, 2, 3, \ldots,$$

where $\omega_{cl} = \sqrt{s/m}$ is the angular frequency of a classical simple harmonic oscillator with spring constant s and mass m. The zero-point energy of the QM oscillator is $E_0 = \frac{1}{2} \hbar \omega_{cl}$.