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1 Microstates and Macrostates

1.1 Microscopic Description

Last term in the Thermodynamics course, you learned about the physics of macroscopic systems,
consisting of a large number of particles N � 1. It could be a drop of water, a cup of coffee, some
gas in a piston or the whole Universe. You were considering the macroscopic properties of the system
such as temperature, pressure etc. However, we all know that matter is really made of atoms, and at
least in classical mechanics we could in principle go and measure the position ~xi and velocity of each
of them ~vi. This would obviously be a much more detailed description of the state of the system, and
if we assume that the atoms are pointlike, it would describe the state completely. In general, we call
the complete description of the state of the system, containing all possible information about it, its
microstate.

Within this microscopic description, we can find out exactly how the system behaves if we calcu-
late the forces ~Fi(~x1, . . . , ~xN ) acting on all the particles, and then solve Newton’s second law

m
d2~xi
dt2

= ~Fi(~x1, . . . , ~xN ).

This gives us an exact description of the behaviour of the system. This approach is known as
molecular dynamics, and in principle it is superior to the macroscopic thermodynamic description,
which is only approximate. However, it is usually not possible in practice because of the large number
of particles (one decilitre of water contains N = 3 × 1024 water molecules), because one needs to
solve the same number of coupled differential equations.

Furthermore, nature is not classical. In quantum mechanics, the microstate of the system is
specified by its quantum wave function ψ(~x1, . . . , ~xN ). We would have to solve the Schrodinger
equation for all the N particles simultaneously. Instead of N coupled ordinary differential equations,
one has an N -dimensional partial differential equation, which is even more hopeless. The largest
quantum molecular dynamics simulations have described only around 1000 atoms.
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1.2 Macroscopic Description

Thermodynamics proposes a very different approach. Instead of the microstate, one is only consid-
ering the macrostate of the system. The macrostate is the approximate state of the system, specified
by macroscopic variables such as internal energy U , volume V , temperature T , pressure P , en-
tropy S, . . . Which particular variables one uses depends on the system and the kind of questions one
is interested in. The macrostates satisfy the general empirical laws of thermodynamics

0: If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then A is in
thermal equilibrium with C.

1: Conservation of energy in an isolated system.

2: Heat cannot pass from a colder to a hotter body by itself.

3: All substances have the same entropy at absolute zero.

and certain other relations obtained from experiments, such as the equation of state (PV = NkBT
for an ideal gas).

This is an amazingly accurate theory of macrostates of systems in thermal equilibrium, but it
raises some questions:

(i) Where did the laws of thermodynamics come from?

(ii) What is the microscopic meaning of the thermodynamic variables, especially T and S?

(iii) Why does thermodynamics work so well?

(iv) If we know what the system is made of, how do we derive the equation of state?

These questions are important partly because if we cannot answer them we clearly do not really
understand how nature works. However, they are also of concrete practical importance because being
able to calculate the thermodynamic properties of the system allows us to make predictions about
its behaviour in different conditions, such as very low temperatures, and to describe phenomena and
systems that cannot be studied experimentally such as the early universe or the interior of a neutron
star.

1.3 Statistical Physics

The aim of statistical physics is to answer these questions and thereby provide a link between the
microscopic and macroscopic descriptions. We do that by using statistical methods.

It is clear that the system has many more microstates than macrostates. The air in a lecture
theatre has (to a good approximation) the same temperature, pressure etc. throughout the lecture and
therefore it stays in the same macrostate. However, the molecules that make up the air are constantly
moving around in the room, and therefore the microstate is constantly changing. All these microstates
correspond to the same macrostate.

There are therefore a large number of microstates corresponding to each macrostate. This col-
lection of microstates is known as an ensemble. As we will see later, different microstates may occur
with different probabilities in a given macrostate, and we have to take this into account. Mathemat-
ically, we define the ensemble as a probability distribution in the space of all possible microstates. It
associates a probability pα with each microstate α.
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The evolution of the ensemble under the microscopic laws is usually much simpler than the evo-
lution of the microstates. In particular, if the ensemble does not change with time at all, the system
is said to be in an equilibrium state. Even then, the microstate of the system changes constantly
according to the microscopic equations of motion.

The ensemble is therefore a statistical description of the macrostate of the system, and every
macrostate corresponds to some particular ensemble. The key questions in statistical physics are

(i) What is the correct ensemble to describe a given macrostate?

(ii) How do we calculate the thermodynamic properties of the system from a given ensemble?

2 Isolated Systems

2.1 Microcanonical Ensemble

Some of the thermodynamic variables are easier to interpret microscopically than others. In particular,
volume V and particle number N are quantities that exist and are well defined for a single microstate.
The same is also true for internal energy U , which can be identified with the total microscopic energy
E of the system, normalised in such a way that the minimum accessible energy is zero,

U = E − Emin. (2.1)

Therefore, we start by considering an isolated system, by which we mean a system with fixed U , N
and V .

The macrostate of an isolated system is specified by the values of U , N , and V , and therefore
the energy, particle number and volume of any microstate in the corresponding ensemble have to have
these same values. In general, there is a large number of such microstates, and we have to choose what
statistical weights we give to them. Since we do not have any more information about the system, we
assume that

all possible microstates of an isolated system in equilibrium are equally probable.

This is the fundamental postulate of statistical mechanics. It is just a postulate, and it is not always
true, but in practice it works very well. The ensemble defined in this way is known as the microcanon-
ical ensemble. Mathematically, the microcanonical ensemble is defined as the probability distribution

pα =

{
p0, if Eα = U , Vα = V and Nα = N
0 otherwise,

(2.2)

whereEα, Vα andNα are the energy, volume and particle number of microstate α, and p0 is a constant.
As such, the fundamental postulate only makes sense if the number of microstates with given U ,

N and V is finite, but in classical mechanics it is usually not even countable. This problem is usually
avoided in quantum mechanics, since observables are quantised.

As an example, let us consider a very simple case, a simple harmonic oscillator. Classically, its
energy is

ε =
1

2
mv2 +

1

2
mω2x2.

The set of microstates that have a given energy ε is an ellipse, and being continuous, contains an
infinite number of points. We would therefore have to choose what probability distribution we use on
the ellipse.
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M Ω microstates
0 1 (0, 0, 0)
1 3 (1, 0, 0), (0, 1, 0), (0, 0, 1)
2 6 (1, 1, 0), (1, 0, 1), (0, 1, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2)
3 10 (1, 1, 1), (2, 1, 0), (2, 0, 1), (1, 2, 0), (0, 2, 1)

(1, 0, 2), (0, 1, 2), (3, 0, 0), (0, 3, 0), (0, 0, 3)

Table 1: Multiplicities for N = 3 distinguishable harmonic oscillators.

In quantum mechanics, we identify microstates with different orthogonal quantum states. In
practice this means eigenstates of energy or some other observable. A simple harmonic oscillator has
a discrete set of energy eigenstates

εr = ~ω
(
r +

1

2

)
,

where r is a non-negative integer. In a system that consists of a single harmonic oscillator, each one of
these states is a different microstate. We are more interested systems with large numbers of particles
(or oscillators), and we refer to the possible states of a single particle as single-particle states or often
just “states” for brevity. It is very important to understand the difference between a microstate and a
single-particle state.

In what follows, we will assume that the number of microstates in the microcanonical ensemble
is finite. This number, which we denote by Ω, is called the multiplicity of the macrostate. It is the
central statistical quantity in the study of isolated systems. Because the probabilities of all microstates
have to add up to one, the probability p0 in Eq. (2.2) is p0 = 1/Ω.

2.2 Distinguishable and Indistinguishable Particles

In counting the microstates, it makes a big difference whether the particles (or whatever the con-
stituents of the system are) are distinguishable.

To see this, let us consider a set of N identical oscillators, which interact very weakly so that they
can exchange energy but the energy levels of the oscillators are not affected. We first assume that they
are positioned in a row, so that we can label by i = 1, . . . , N according to their position. We denote
the state of oscillator i by ri. The microstate α of the whole system is specified by listing the states of
all N oscillator, and therefore we can think of it as an N -component vector α = (r1, . . . , rN ). Using
Eq. (2.1), we define the internal energy as the total energy minus the zero-point energy,

U = E − Emin =
N∑
i=1

(εri − ε0) = ~ω
N∑
i=1

ri.

Consider now the microcanonical ensemble with energy U = ~ωM . It contains all microstates in
which the states ri of the individual oscillators satisfy

N∑
i=1

ri = M.

As a concrete example, let us take N = 3. In that case, we can represent the microstate α of the
system by a three-component vector α = (r1, r2, r3). The multiplicities of macrostates with M =
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Figure 1: If the particles are indistinguishable, the microstates are fully described by the occupation
numbers nr, which give the number of particles in state r (right). If the particles are distinguishable,
we would have to know the state of each particle (left).

0, 1, 2 and 3, as well as the actual microstates are listed in Table 1. In this case, since the oscillators
are labelled by their position, we can distinguish between them, and we call them distinguishable.
The state (1, 0, 0) is therefore physically different from state (0, 1, 0) and so on.

Consider now a system of N atoms in the same harmonic potential well around the same point
in space. This is what is done in Bose-Einstein condensate experiments, which we will come back
to later. In classical mechanics, each atom would still have its own identity, since we would be able
to trace its motion and label the particles according to their positions at some reference time t0. For
instance, it would be a well defined question to ask where the particle that was at position x0 at time
t0 is at some later time t.

However, we cannot do this in quantum mechanics. The atoms do not have well-defined trajec-
tories, and there is no sense in which we can label them or distinguish between them. The atoms are
indistinguishable. If we swap the positions of two particles, we end up in the same physical state.
This means that if we again represent the microstate α by integers ri, different permutations of the
set of integers ri correspond to the exactly the same physical situation and should be counted as the
one and the same microstate. Instead of a vector, in which the order of the components matters, we
can represent the microstate by an unordered set consisting of the integers ri. To emphasize the dif-
ference, we write it with curly brackets, α = {r1, r2, r3}. Since {1, 0, 0} = {0, 1, 0} = {0, 0, 1}, it
is useful to choose that we always write them in, say, decreasing order. Then each state has a unique
representation.

Another way to represent the microstate of a system is to tell how many particles are in each single-
particle state r. This is known as the occupation number of state r and denoted by nr. Since the
particles are indistinguishable, it makes no sense to ask which particles are in each state. Therefore,
the occupation numbers of all single-particle states specify the microstate completely. The set of
occupation numbers forms an ordered list, α = [n0, n1, n2, . . .], and this is often the most convenient
representation for the microstate of a system of indistinguishable particles. For clarity, we use square
brackets when listing occupation numbers. For an illustration, see Fig. 1.

As we will see, distinguishable and indistinguishable particles lead to very different macroscopic
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dynamics. As always in physics, it is ultimately experiments rather than the theoretical reasoning
given above that tell us that identical particles have to be treated as indistinguishable. It is remarkable
that relatively simple macroscopic experiments can reveal such a fundamental property of nature.

2.3 Bosons and Fermions

Besides indistinguishablity of particles, quantum mechanics leads to a further complication, which
has equally profound implications for macroscopic physics. Consider the quantum wave function
ψ(x1, x2) of two identical particles. As usual, the probability to find particles at positions x1 and x2

is given by |ψ(x1, x2)|2. Since swapping the positions of the two particles does not change the state,
we must have

|ψ(x1, x2)|2 = |ψ(x2, x1)|2. (2.3)

This requires
ψ(x2, x1) = eiθψ(x1, x2), (2.4)

where θ is some real number. If we repeat this, we find

ψ(x1, x2) =
(
eiθ
)2
ψ(x1, x2), (2.5)

and therefore eiθ = ±1. This means that

ψ(x2, x1) = ±ψ(x1, x2), (2.6)

where the sign is an intrinsic property of the given particle species.
Let us now assume that the two particles are in states ψA(x) and ψB(x). The general two-particle

wave function is a linear combination

ψ(x1, x2) = c1ψA(x1)ψB(x2) + c2ψB(x1)ψA(x2), (2.7)

in which c1 and c2 are constants. The first term corresponds to particle 1 being in state A and particle
2 in state B, and the second term to particle 1 being in state B and particle 2 in state A. Using Eq. (2.6),
we find c1 = ±c2, and consequently

ψ(x1, x2) = c1 [ψA(x1)ψB(x2)± ψB(x1)ψA(x2)] . (2.8)

Finally, let us assume that the states ψA and ψB are the same, which means that we have two
particles in the same state. For the + sign, we find

ψ(x1, x2) = 2c1ψA(x1)ψA(x2), (2.9)

which is perfectly fine. However, for the − sign,

ψ(x1, x2) = c1 [ψA(x1)ψA(x2)− ψA(x1)ψA(x2)] = 0, (2.10)

which means that the state has zero amplitude and does not exist.
Thus, it follows from quantum mechanics that there are two types of particles, and their counting

is different:

• Bosons correspond to the + sign. The number of bosons in a given state is not constrained.
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Bosons
M Ω microstates
0 1 {0, 0, 0} = [3, 0, 0, . . .]
1 1 {1, 0, 0} = [2, 1, 0, . . .]
2 2 {1, 1, 0} = [1, 2, 0, . . .],

{2, 0, 0} = [2, 0, 1, . . .]
3 3 {1, 1, 1} = [0, 3, 0, . . .],

{2, 1, 0} = [1, 1, 1, . . .],
{3, 0, 0} = [2, 0, 1, . . .]

Fermions
M Ω microstates
0 0 -
1 0 -
2 0 -
3 1 {2, 1, 0} = [1, 1, 1, 0, . . .]
4 1 {3, 1, 0} = [1, 1, 0, 1, . . .]
5 2 {3, 2, 0} = [1, 0, 1, 1, . . .],

{4, 1, 0} = [1, 1, 0, 1, . . .]

Table 2: Multiplicities for N = 3 indistinguishable harmonic oscillators.

• Fermions correspond to the − sign. They obey the Pauli exclusion principle, which means
that two particles cannot be in the same state.

It can be proven that this statistical nature of particles is fundamentally related to their spin. Parti-
cles with integer spin are bosons, and particles with half-integer spin such as 1/2 or 3/2 are fermions.
Examples of fermions are electrons, protons and neutrons. When a particle is made of several elemen-
tary particles, the spins are added together modulo an integer, and therefore a particle that contains
an odd number of fermions is a fermion. For example, 3He atoms, which are made of two protons,
one neutron and two electrons, are fermions. Examples of bosons are photons, hydrogen atoms (one
proton and one electron) and 4He atoms (two protons, two neutrons and two electrons).

When counting the multiplicities of macrostates, one has to keep in mind whether the particles
in question are bosons or fermions, since in the latter case all particles have to be in different single-
particle states. Table 2 shows the multiplicities of the macrostates on a three-particle system with
different M and the corresponding microstates. The microstates are shown both by listing the states
{r1, r2, r3} and by listing the occupation numbers [n0, n1, . . .]. A general expression for the multi-
plicity is not known even for this simple case, which illustrates why microcanonical ensemble is not
well suited for practical calculations.

2.4 Entropy and the Second Law

To understand the macroscopic significance of Ω, let us consider an example that is familiar from the
Thermodynamics course. We have an isolated container of volume V1 that is split into two parts by
a wall (see Fig. 2). The part on the left has volume V0 and is filled with gas, whereas the part on the
right is empty.

If the wall is removed, the gas fills the whole container. This process is known as adiabatic free
expansion. In the Thermodynamics course, you showed using the ideal gas equation of state that in

888



Statistical Physics, Spring 2010 Lecture NotesStatistical Physics, Spring 2010 Lecture NotesStatistical Physics, Spring 2010 Lecture Notes

V
0

V
1

Figure 2: Adiabatic free expansion.

this process the entropy S of the system grows by

S1 − S0 = ∆S = NkB ln
V1

V0
, (2.11)

where S1 and S0 are the entropies of the final and initial state, respectively.
One formulation of the second law of thermodynamics is that the entropy of an isolated system

cannot decrease. The growth of entropy therefore means that adiabatic free expansion is an irreversible
process. It is not possible for the system to go back from its final to its initial state.

That was how the process of adiabatic free expansion looks like in thermodynamics. Let us now
think about it from the point of view of statistical physics. In the initial state, we have some number
N of gas particles in volume V0 with total energy U . This macrostate has some multiplicity, which
we denote by Ω0. At this stage, we do not need to know how to compute it. In the final state, the same
N particles are in volume V1 with the same energy U , since the energy is conserved in an isolated
system. This macrostate has a different multiplicity Ω1.

Since the Ω1 microstates that correspond to the final state include all microstates with total energy
U and N particles anywhere in the container, it also includes the Ω0 microstates that correspond to
the initial state. They are the microstates in which all particles happen to be in the original volume V0.
Therefore, the fundamental postulate implies that the probability that the process is reversed, i.e., all
the particles are in the original volume V0, is

pN =
Ω0

Ω1
. (2.12)

On the other hand, we can compute this probability directly. In the final state, a given particle
can equally well be anywhere in the system. In particular, the probability p1 that it is in the original
volume V0 is therere given simply by the ratio of the volumes,

p1 =
V0

V1
. (2.13)

The probability pN that all the particles are in the original volume V0 is then the combined probability
of the N individual ones,

pN =

(
V0

V1

)N
. (2.14)
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If N is large, then this probability is tiny. This is the microscopic reason why the process is ir-
reversible. The system never returns into its original state in practice, although it is possible in
principle.

Combining Eqs. (2.12) and (2.14), we find

Ω0

Ω1
=

(
V0

V1

)N
. (2.15)

The logarithm of this is

N ln
V0

V1
= ln

Ω0

Ω1
. (2.16)

Using this result, we can write Eq. (2.11) as

S1 − S0 = kB ln
Ω1

Ω0
= kB ln Ω1 − kB ln Ω0. (2.17)

This suggests we identify
S = kB ln Ω. (2.18)

This equation was discovered by Ludwig Boltzmann, and the quantity S defined by the equation is
the Boltzmann entropy. Note that in thermodynamics, the definition of entropy involves the concept
of temperature, which itself is only properly defined for perfect gases. In contrast, Eq. (2.18) can be
applied to any system, at least in principle, and is therefore a more general definition of entropy.

Equation (2.18) is one of the most important equations in statistical physics, since it provides a
link between the macroscopic (left hand side) and microscopic (right hand side) descriptions of the
system. When we know entropy, we can use it to compute other thermodynamic variables using the
relations we have learned in thermodynamics. In particular, we use the relation

1

T
=

(
∂S

∂U

)
V,N

, (2.19)

which follows directly from the fundamental equation of thermodynamics. This gives a universal and
absolute definition for the temperature of any system.

We can carry out a few checks to make sure that the quantity defined by Eq. (2.18) really behaves
the way we would expect entropy to behave. First, the ground state of a quantum mechanical system
is (usually) unique. Therefore, if the system is in its ground state, as we would expect it to be at zero
temperature, the multiplicity is Ω = 1. According to Eq. (2.18), this implies S = 0, in agreement
with the third law of thermodynamics. Second, the quantity defined by Eq. (2.18) is extensive, as one
can see by considering two systems A and B, whose multiplicities are ΩA and ΩB . If the systems do
not interact or interact only weakly, their microstates are independent of each other, and therefore the
total number of microstates is

Ωtot = ΩAΩB. (2.20)

Eq. (2.18) then implies
Stot = SA + SB. (2.21)

As an example, let us calculate the entropy of a system of N distinguishable spin-1/2 particles
in magnetic field. Quantum mechanically, such a spin can be in two different states, either pointing in
the direction of the magnetic field or opposite to it. We refer to these states as “down” and “up”. The
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down state has a lower energy, and we choose it to be zero, and we label the energy of the up state by
ε0. The energy of a single spin i is therefore εi = ε0ri, where

ri =

{
1 for the up state and
0 for the down state.

(2.22)

The total internal energy is therefore

U = ε0

N∑
i=1

ri. (2.23)

The microcanonical ensemble corresponds to a fixed value of U , and therefore to a fixed value of

M ≡
N∑
i=1

ri. (2.24)

To calculate the multiplicity of the macrostate corresponding to a given M , we have to count all the
possible ways the N spin can be arranged so that M of them point up. Let us first look at a few of the
lowest possible values of M :

M = 0: The only microstate with M = 0 is the one with all spins down. Therefore Ω(0) = 1.

M = 1: Start from M = 0 and flip one of the spins. There are N spins to choose from, so Ω(1) = N .

M = 2: Flip one of the (N − 1) spins that are still pointing down. There are N(N − 1) possible ways
to flip the two spins, but the final microstate is the same if you change the order in which you
flipped them, so Ω(2) = N(N − 1)/2.

...

The general expression for the multiplicity is given by the number of different ways M items
can be chosen from the total of N if the order does not matter (see Classwork 1),

Ω(M) =
N !

M !(N −M)!
. (2.25)

The entropy of this system is therefore

S = kB ln Ω = kB (lnN !− lnM !− ln(N −M)!) . (2.26)

When N , M and N −M are all large, we can use Stirling’s formula (see Appendix A)

lnN ! ≈ N lnN −N, (2.27)

to simplify this into

S ≈ kB
(
M ln

N

M
+ (N −M) ln

N

N −M

)
. (2.28)

Some consequences of this result are explored in Problem Sheet 1.
Finally, let us discuss the implications of Boltzmann’s definition (2.18) of entropy. One way to

phrase the second law of thermodynamics is that the entropy of an isolated system cannot decrease.
A process in which entropy grows is therefore irreversible. This defines an “arrow of time” since such
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processes can only take place in one direction, even though the microscopic laws of nature are time
reversal symmetric.

The identification of entropy with probability explains this. When the system evolves, it will
generally pass through all possible microstates with the same U andN . (This is known as the ergodic
hypothesis.) Unless we actually track the evolution of its microstates, the best we can say after a
while is that it can equally well be in any microstate. This is the content of the fundamental postulate
of statistical physics.

If we start in a macrostate that has a lower entropy than the equilibrium state, Eq. (2.18) says that
the multiplicity of the initial state is smaller than the total number of possible microstates. After a
while, the probabilities of all microstates have become equal, and the system is in the equilibrium
state, which has maximum entropy S. Therefore the entropy always grows.

This irreversibility does not mean that the laws of physics distinguish between past and future.
If we could actually reverse the velocities of all atoms at a later time, the system would evolve back
into its original state. However, this would require dealing with the microstate of the system, and
the second law only refers to the evolution of the macrostate. Likewise, if we wait long enough the
system will eventually come pass through its original state, but we would have to wait an extremely
long time.

Instead, what distinguishes between past and future is the way we have set the system up. If the
system starts in a state with low entropy, we must have prepared it so. For instance, we have filled
only part of the container with gas. This is an highly atypical state for the system and would not have
occured without our interference. Once we have done that, it is only natural that at a later time, we
find the system to be in a more typical state.

The origin of the arrow of time, i.e., why all natural thermodynamics processes take place only in
one direction, is therefore that the entropy of the Universe is relatively low, and therefore it is much
more likely that it grows than that it decreases.

3 Systems with Variable Energy

3.1 Zeroth Law

As a warm-up exercise, consider an isolated container separated into two parts by a diathermal wall,
meaning that it allows the two sides to exchange energy in the form of heat. The wall cannot move,
and particles cannot penetrate it, so the volumes and particle numbers of the two sides remain fixed.
Let us call the left hand side system 1 and the right hand side system 2.

Let us now consider a macrostate in which the energies of systems 1 and 2 are U1 and U2. The
total energy is the sum of these two

U = U1 + U2, (3.1)

and since the whole system is isolated, it is fixed. If we assume that the two systems interact very
weakly, their microstates are independent, and therefore the total multiplicity is the the product of the
multiplicities of the two systems. Since the multiplicity of the system 1 depends only on U1, and the
multiplicity of system 2 only on U2, we have

Ωtot(U1, U2) = Ω1(U1)Ω2(U2). (3.2)

According to Eq. (2.18), we have

Stot(U1, U2) = S1(U1) + S2(U2), (3.3)
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where Si(Ui) is the entropy of system i at energy Ui.
In equilibrium, entropy of the whole system is maximised, meaning that

∂Stot

∂U1
= 0. (3.4)

Using Eq. (3.3), we can write this as

∂Stot

∂U1
=
∂S1

∂U1
+
dU2

dU1

∂S2

∂U2
=
∂S1

∂U1
− ∂S2

∂U2
, (3.5)

where we have used U2 = U − U1. Therefore, Eq. (3.4) becomes

∂S1

∂U1
=
∂S2

∂U2
. (3.6)

It then follows directly from the definition of temperature (2.19) that the temperatures of the two sides
are equal

1

T1
=

1

T2
⇔ T1 = T2. (3.7)

This means that two systems that are in thermal equilibrium with each other have the same tempera-
ture, which is equivalent with the zeroth law of thermodynamics. If you now consider a third system
in equilibrium with system 3, then T3 = T2, and consequently T3 = T1, which means that systems 1
and 3 are in thermal equilibrium.

3.2 Canonical ensemble

Let us now make system 2 much larger than system 1. Its heat capacity, being an extensive quantity,
becomes very high, and therefore its temperature remains practically constant T2 = T = const.
System 2 becomes a heat bath. Furthermore, we have

U1 � U2, S1 � S2. (3.8)

The probability that the energies of systems 1 and 2 are U1 and U2 is proportional to the multiplicity
of such a macrostate,

p(U1, U2) ∝ Ω(U1, U2) = eS(U1,U2)/kB = eS1(U1)/kBeS2(U2)/kB = Ω1(U1)eS2(U2)/kB , (3.9)

where we used Boltzmann’s formula (2.18) first for the whole system and then again for system 1.
It is now convenient to Taylor expand

S2(U) = S2(U2 + U1) = S2(U2) +
∂S2

∂U2
U1 +

1

2

∂2S2

∂U2
2

U2
1 + . . . (3.10)

By the definition (2.19) of temperature, the coefficient of the second term is

∂S2

∂U2
=

1

T2
=

1

T
. (3.11)

Similarly, the coefficient of the third term is

1

2

∂2S2

∂U2
2

=
1

2

∂

∂U2

1

T
, (3.12)
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which vanishes because the temperature T was assumed to be constant. Another way to see this would
be to write U2 = u2N2, where u2 is the energy per particle. Then we have

1

2

∂2S2

∂U2
2

=
1

2N2

∂(1/T )

∂u2
∝ 1

N2

N2→∞−→ 0, (3.13)

where we have used the fact that T and u2 are intensive quantities and therefore independent of N2.
Either way, this means that higher-order terms in Eq. (3.10) vanish, and we have

S2(U) = S2(U2) +
U1

T
⇒ S2(U2) = S2(U)− U1

T
. (3.14)

Substituting this into Eq. (3.9), we find

p(U1, U2) ∝ Ω1(U1)eS2(U)/kBe−U1/kBT . (3.15)

Note that since U is fixed the factor exp(S2(U)/kB) is just a constant. The expression depends only
on U1, so we can drop the argument U2. We can therefore write

p(U1) =
1

Z
Ω1(U1)e−U1/kBT , (3.16)

where Z is a constant normalisation factor. This expression gives the probability that system 1 has
energy U1. Since the expression is independent of details of system 2, the subscript 1 has become
unnecessary, and we can conclude that in general, the probability that a system that is in thermal
equilibrium with a heat bath at temperature T has energy U is

p(U) =
1

Z
Ω(U)e−U/kBT . (3.17)

Consider now a given microstate α that has energy Eα. The probability that the system is in this
microstate is given by p[Eα] divided by the number of microstates with the same energy, which is
equal to Ω[Eα]. This means

pα =
1

Z
e−Eα/kBT . (3.18)

This probability distribution is known as the Boltzmann distribution.
The normalisation factor Z can be computed from the condition that the sum of the probabilities

of all possible microstates has to be one,

1 =
∑
α

pα =
1

Z

∑
α

e−Eα/kBT , (3.19)

where the sum is over all microstates α. This implies

Z =
∑
α

e−Eα/kBT . (3.20)

Even though Z was introduced simply as a normalisation factor, we will see that it plays a crucial
role in connecting statistical physics with thermodynamics. It is generally known as the partition
function.1

1In textbooks, the partition function is sometimes written as a sum over energy levels rather than microstates. Then one
has to include the factor Ω(U) in Eq. (3.17) to keep track of how many microstates have the same energy.
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The probabilities in Eq. (3.18) define the canonical ensemble. In summary, the mathematical
definition of the canonical ensemble is

pα =

{
1
Z e
−Eα/kBT if Vα = V and Nα = N ,

0 otherwise.
(3.21)

Physically, the canonical ensemble models a system with fixedN and V in thermal equilibrium with a
heat bath at temperature T . Note that the “system” in question can be even a single particle, in which
case, we will denote its microstates by r and the corresponding energies by εr, so that

pr =
1

Z
e−εr/kBT . (3.22)

Finally, it is often more natural to use the quantity

β =
1

kBT
(3.23)

instead of T . In terms of β, the probability of a given microstate α is

pα =
1

Z
e−βEα . (3.24)

3.3 Connection with Thermodynamics

Let us now try to use the canonical ensemble to calculate the thermodynamic properties of the system.
The easiest quantity to compute is the internal energy U , since it corresponds simply to the mean
energy E of the probability distribution (3.18). Its value is therefore given by

U = E =
∑
α

Eαpα =
1

Z

∑
α

Eαe
−βEα . (3.25)

Let us now note that if we differentiate Eq. (3.20) with respect to β, it brings down a factor −Eα and
therefore we find

∂Z

∂β
=
∑
α

(
−Eα

)
e−βEα = −

∑
α

Eαe
−βEα . (3.26)

Comparing with Eq. (3.25), we can see that the two equation have exactly the same sum, and we can
therefore write

E = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
. (3.27)

Writing this in terms of T instead of β, we have

E = −dT
dβ

∂ lnZ

∂T
= kBT

2∂ lnZ

∂T
. (3.28)

It is also straightforward to compute the standard deviation ∆E of energy in the canonical dis-
tribution, defined as

(∆E)2 ≡ E2 − E2
. (3.29)

First, we observe that in analogy with Eq. (3.26), we have

∂2Z

∂β2
=
∑
α

(Eα)2e−βEα = ZE2. (3.30)
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Taking the second derivative of the logarithm gives

∂2 lnZ

∂β2
=

∂

∂β

(
1

Z

∂Z

∂β

)
=

1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2

= E2 − E2
, (3.31)

where in the last step we used Eqs. (3.27) and (3.30). Thus, we have

(∆E)2 =
∂2 lnZ

∂β2
. (3.32)

Using Eq. (3.27) we can also write this as

(∆E)2 = −∂E
∂β

= kBT
2C, (3.33)

where C = ∂U/∂T is the heat capacity of the system. This implies that the relative fluctuation of
energy is

∆E

U
=

√
kBT 2C

U
. (3.34)

Both the heat capacity C and the internal energy U are extensive quantities, i.e., proportional to N .
Therefore, the relative fluctuation depends on N as

∆E

U
∝
√
N

N
=

1√
N
. (3.35)

In the thermodynamic limit (N � 1) the relative fluctation is therefore tiny. This means that the
canonical ensemble is in fact, practically equivalent to the microcanonical one, in which the value of
energy is precisely fixed.

One can compute the mean value of any other microscopic quantity X in the the same way, as

X =
∑
α

pαXα. (3.36)

This is, however, not really enough. To be able to relate our microscopic description to thermodynam-
ics, we must be able to compute values of macroscopic thermodynamic variables such as S and P . To
do that, we need the relevant thermodynamic potential, and we know from thermodynamics that for
systems with variable energy that is the free energy2 F , defined as

F = U − TS. (3.37)

Once we know the free energy, we can calculate any thermodynamic variables. For example,

S = −
(
∂F

∂T

)
V

, P = −
(
∂F

∂V

)
T

. (3.38)

From the Boltzmann definition (2.18), one can derive a general expression (see Appendix B),

S = −kB
∑
α

pα ln pα, (3.39)

2This quantity is sometimes also called the Helmholtz function.
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which is valid for any ensemble, and we use this to calculate F . For the canonical ensemble (3.24),
we have

ln pα = −βEα − lnZ (3.40)

and therefore

S = kB

(∑
α

pαβEα + lnZ

)
. (3.41)

We note that the sum over microstates α gives the mean energy E = U , so we have

S = kB (βU + lnZ) =
U

T
+ kB lnZ. (3.42)

Substituting this into Eq. (3.37) gives an explicit microscopic expression for the free energy,

F = −kBT lnZ. (3.43)

This equation connects the thermodynamic description of the system (left hand side) with the mi-
croscopic description (right hand side). It is therefore analogous to the Boltzmann definition of en-
tropy (2.18). Significantly, the quantity Z, which was introduced merely as a normalisation factor in
Eq. (3.16), has turned out to play a key role in this connection.

As an example, let us calculate the internal energy U from Eq. (3.43). We use Eqs. (3.37) and
(3.38) to write it as

U = F + TS = F − T
(
∂F

∂T

)
V

, (3.44)

and substituting Eq. (3.43), we find

U = −kBT lnZ + kBT

(
∂

∂T
T lnZ

)
V

= −kBT lnZ + kBT lnZ + kBT
2

(
∂

∂T
lnZ

)
V

= kBT
2

(
∂

∂T
lnZ

)
V

, (3.45)

which agrees with the expression (3.28) we derived earlier directly from the probabilities pα.
As a more concrete example, let us again consider a system of N distinguishable spin 1/2 parti-

cles. When we described it using the microcanonical ensemble, we had to calculate the multiplicities
Ω(M). In this simple case, it was possible, but it is almost always tedious and often impossible. When
we model the system using the canonical ensemble, we avoid this step altogether.

The partition function Z is given by Eq. (3.20), where the sum goes over all possible microstates
of the system. Each of the spins can be in two possible states, ri = 0 and ri = 1, so the partition
function is

Z =

1∑
r1=0

· · ·
1∑

rN=0

exp

(
−βε0

N∑
i=1

ri

)
, (3.46)

where I have used the notation · · · which generally represents repeating the same expression. This
sum factorises (see Appendix A) into

Z =

(
1∑

r1=0

e−βε0r1

)
· · ·

(
1∑

rN=0

e−βε0rN

)
=
(

1 + e−βε0
)N

. (3.47)

Now, we can use Eq. (3.43) to calculate the thermodynamic properties of the system. In contrast with
the calculation done in Section 2.4, the whole calculation only involved mechanical manipulation of
sums.
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3.4 Single Free Particle

The canonical ensemble can be used to describe even a system consisting of a single particle. The
ensemble is then just a probability distribution for the different states of the particle, which we will call
single-particle states and label by r. If we denote the energy of state r by εr, the partition function is

Z1 =
∑
r

e−βεr , (3.48)

where the subscript 1 indicates that this is the partition function of a single particle.
The single-particle states of free particles are labelled by their momentum ~p and also by any

internal degrees of freedom such as angular momentum, and we need to sum over all of them,∑
r

=
∑
int

∑
~p

. (3.49)

The spectrum is continuous spectrum because the momentum p is not quantised. This means that the
sum over ~p should actually be an integral. However, when we replace the sum by an integral, we have
to be careful to give each state the correct weight. This means that the sum over states corresponds to
some density of states f(ε) defined by3

∑
r

→
∫
dε f(ε), (3.50)

and we need to find f(ε). The concrete meaning of f(ε) is that the integral∫ ε1

ε0

dεf(ε) (3.51)

gives the number of states with energies between ε0 and ε1.
In practice, the internal states and translational states are usually independent in the sense that

energy of the single particle state is a sum of the two contributions

εr = εint + εtr(~p).

In that case the partition function (3.48) factorises,

Z1 =

(∑
int

e−βεint

)∑
~p

e−βεtr(~p)

 ≡ ZintZtr.

We will mostly consider the case in which the internal states are degenerate, which means that they
have the same energy. Then εint = 0, and Zint is simply the number of different internal states, which
is known as the degeneracy of the momentum state and is often denoted by g. If we now define the
density of translational states ftr(ε) by∑

~p

→
∫
dεftr(ε),

3Sturge and Trevena denote the density of states by g.
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we can see that the full density of states is

f(ε) = gftr(ε). (3.52)

To calculate ftr(ε), we imagine that our particle is in a finite box of size V = L × L × L. At
the end of the calculation, we will take the box size to infinity, L→∞. In a finite box, the spectrum
becomes quantised. The states of the particle correspond to standing waves that vanish at the walls.
In one dimension, the wave functions are of the form

ψ(x) = A sin
2πx

λ
, (3.53)

where the wavelength λ is such that ψ(L) = 0. This gives the quantisation condition

λn =
2L

n
, n ∈ Z+. (3.54)

The momentum of the particle is then also quantised,

pn =
h

λn
=
hn

2L
. (3.55)

In three dimensions, the states are labelled by three positive integers (nx, ny, nz) which we can think
of forming a vector ~n. The momentum of the particle in this state is

~p~n =
h~n

2L
≡ ∆p~n, (3.56)

where we have defined the momentum spacing ∆p = h/2L. The possible states correspond to a
cubic grid of points in the momentum space, with spacing ∆p. When L → ∞, the spacing goes to
zero, ∆p→ 0.

The (translational) energy of state ~n is

ε(~p~n) =
√
~p2
~n +m2. (3.57)

The translational partition function is the sum over all the states, i.e., all triplets ~n of positive integers,

Ztr =
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

exp [−βε(~p~n)] . (3.58)

When we write this as

Ztr =
1

(∆p)3

∞∑
nx=1

∆p

∞∑
ny=1

∆p

∞∑
nz=1

∆p exp [−βε(~p~n)] . (3.59)

When we take the limit ∆p→ 0, this coincides with Riemann’s definition of the integral

Ztr =
1

(∆p)3

∫ ∞
∆p

dpx

∫ ∞
∆p

dpy

∫ ∞
∆p

dpz exp [−βε(~p)] . (3.60)

As ∆p→ 0, the lower limits of the integrals approach zero, and therefore we have a three-dimensional
momentum integral over momenta whose all components px, py and pz are positive. Since the inte-
grand does not depend on their signs, we can extend the integration over the whole momentum space
by replacing ∫ ∞

0
dpx =

1

2

∫ ∞
−∞

dpx. (3.61)
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Therefore, we find

Ztr =
1

8(∆p)3

∫
d3pe−βε(~p) =

L3

h3

∫
d3pe−βε(~p). (3.62)

Furthermore, since the integrand does not depend on the direction of ~p, it is convenient to use spherical
coordinates and integrate over the angles to obtain

Ztr =
4πL3

h3

∫ ∞
0

dp p2e−βε(p), (3.63)

with ε(p) =
√
p2 +m2. This expression is valid generally, but it is often useful to consider non-

relativistic (p� mc) and ultrarelativistic (p� mc) limits in which it simplified.
In the non-relativistic case, the energy of the particle is ε(p) = p2/2m (where we have dropped

a constant term). We change the integration variable from p to ε by writing p =
√

2mε, and find
dp =

√
m/2εdε. Using these, we obtain

Ztr =
4πL3

h3

∫ ∞
0

dε

√
m

2ε
2mε e−βε =

∫ ∞
0

dε
2πV

h3
(2m)3/2ε1/2e−βε. (3.64)

Comparing with Eq. (3.50), we can see that in the non-relativistic limit the density of translational
states is

fNR
tr (ε) =

2πV

h3
(2m)3/2ε1/2. (3.65)

In the ultrarelativistic case, the energy of the particle is ε(p) = cp, and dp = dε/c. The partition
function is

Ztr =
4πL3

h3

∫ ∞
0

dε ε2

c3
e−βε =

∫ ∞
0

dε
4πV

c3h3
ε2e−βε, (3.66)

and we can read off the density of states of ultrarelativistic particles,

fUR
tr (ε) =

4πV

c3h3
ε2. (3.67)

As an example, let us consider the thermodynamics of a free non-relativistic particle. Let us
assume that the particle has spin s, so that it has g = 2s + 1 internal spin states. The full single-
particle partition function is then

Z1 = gZtr = g

∫ ∞
0

2πV

h3
(2m)3/2ε1/2e−βε.

First, we calculate the integral (see Appendix A)∫ ∞
0

dε ε1/2e−βε =
1

2

√
π

β3
, (3.68)

and obtain

Z1 =
2πV g

h3
(2m)3/2 1

2

√
π

β3
= gV

(
2πm

βh2

)3/2

= gV

(
2πmkBT

h2

)3/2

. (3.69)

We can now immediately calculate the mean energy ε of the particle using Eq. (3.27),

ε = −∂ lnZ1

∂β
= − ∂

∂β

[
ln gV − 3

2
ln
βh2

2πm

]
=

3

2β
=

3

2
kBT. (3.70)

This is an example of a very general result in classical statistical mechanics, known as classical
equipartition of energy: At temperature T , every degree of freedom has energy kBT/2. In our case,
the particle has three translational degrees of freedom, since it can move in three dimensions. Note
that the equipartition does generally not apply to quantum mechanical systems.
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3.5 Gas of Distinguishable Particles

We can now try to describe a gas that consists of a large number N of (non-relativistic) particles. Let
us first assume that the particles are distinguishable, which would be true in classical mechanics. We
will see that the results do not agree with basic observations, which shows that identical particles are
fundamentally indistinguishable. Therefore, this calculation does not describe nature!

The partition function of N distinguishable particles is

ZN =
∑
r1

· · ·
∑
rN

e−β
∑N
i=1 εri , (3.71)

where ri is the state of particle i. In the sum (3.71), the exponential factorises into terms each of which
depends only on the state of one particle,

e−β
∑N
i=1 εri =

N∏
i=1

e−βεri . (3.72)

Furthermore, when we consider the innermost sum in Eq. (3.71), only the factor e−βεrN depends on
the summation index rN . We can move all the other factors outside the summation. Similarly, we can
move the first N − 2 factors outside the summation over rN−1 and so on, so that we have

ZN =
∑
r1

e−βεr1
∑
r2

e−βεr2 · · ·
∑
rN

e−βεrN . (3.73)

But this is just the product

ZN =
N∏
i=1

(∑
ri

e−βεri

)
. (3.74)

Finally, we note that all the factors in this product are identical, so that we have

ZN =

(∑
r

e−βεr

)N
= ZN1 . (3.75)

From this, we would obtain the free energy

FN = −kBT lnZN = −NkBT lnZ1 = −NkBT
(

lnV +
3

2
ln

2πmkBT

h2

)
. (3.76)

From thermodynamics, we know that the free energy should be an extensive quantity, so that if we
double the system size, the free energy doubles, FN → 2FN . However, the expression in Eq. (3.76)
is not extensive, since if we double the system size (N → 2N , V → 2V ), we find

FN → −2NkBT

(
ln 2V +

3

2
ln

2πmkBT

h2

)
= 2FN − 2NkBT ln 2 6= 2FN . (3.77)

This shows that we must have made done something wrong, and indeed we have. We assumed im-
plicitly that the particles are distinguishable so that we can label them by i, but that is not true.
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4 Variable Particle Number

4.1 Grand Canonical Ensemble

Distinguishable and indistinguishable particles were already discussed in Section 2.2. As stated there,
it is often most convenient to represent the microstate in terms of occupation numbers nr. The total
number of particles is

N =
∑
r

nr, (4.1)

where the sum goes over all single-particle states r, and the total energy is

U =
∑
r

εrnr, (4.2)

where εr is the energy of the single-particle state r. In the partition function, we have to sum over all
different microstates, and for N indistinguishable particles this means

ZN =

(∑
n0

∑
n1

· · ·

)
e−β

∑∞
r=0 nrεr , with

∑
r

nr = N, (4.3)

rather than Eq. (3.71).
It is quite clear that it is difficult to calculate the sum in Eq. (4.3) in practice because of the

constraint
∑

r nr = N . The situation is very similar to the microcanonical ensemble, in which
calculations are made difficult by the energy constraint∑

i

εri = U. (4.4)

Then, the problem was solved by switching to the canonical ensemble in which U is allowed to vary.
In the same way, we can make N variable.

Recall the derivation of the canonical ensemble in Section 3.2. There we allowed system 1 to
exchange energy with the much bigger system 2, which acted as a heat bath. Now, let us allow them
to exchange particles, too. The macrostates that we consider are parameterised by the energies U1, U2

and particle numbers N1, N2 of the two systems. The total energy U = U1 +U2 and the total particle
number N = N1 + N2 are fixed, but the energies and particle numbers of the individual systems are
allowed to vary.

The entropy S of the whole system is again a sum of the entropies S1 and S2 of the two subsys-
tems,

S(U1, N1;U2, N2) = S1(U1, N1) + S2(U2, N2). (4.5)

According to the fundamental hypothesis, the probability of the macrostate (U1, N1;U2, N2) is pro-
portional to its multiplicity, and using Boltzmann’s definition of entropy (2.18), we can write

p(U1, N1;U2, N2) ∝ eS(U1,N1;U2,N2)/kB = eS1(U1,N1)/kBeS2(U2,N2)/kB

= Ω1(U1, N1)eS2(U2,N2)/kB , (4.6)

where Ω1(U1, N1) is the number of microstates of system 1 that have energy U1 and particle number
N1.
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It again turns out to be useful to Taylor expand

S2(U,N) = S2(U2 + U1, N2 +N1) ≈ S2(U2, N2) +
∂S2

∂U2
U1 +

∂S2

∂N2
N1 + . . . (4.7)

In analogy with the definition of temperature (2.19) we can define a new quantity called the chemical
potential and denoted by µ as

µ

T
= − ∂S2

∂N2
. (4.8)

As with the temperature, we assume that µ is a constant, because system 2 is much larger than system
1. The probability that system 1 has energy U1 and particle number N1 is therefore

p(U1, N1) =
Ω1(U1, N1)

Z
exp

(
− 1

kBT
U1 +

µ

kBT
N1

)
, (4.9)

where Z is a normalisation constant known as the grand partition function. We can obtain the
probability of a single microstate by dividing this by Ω1(U1, N1).

Because all references to system 2 have disappeared, we also drop the subscript 1, and simply say
that the result is valid for any system that can exchange energy and particles with its environment.
Microstates with any energy and particle number are allowed, and the probability that the system is in
a microstate α with energy Eα and particle number Nα is

pα =
1

Z
e−(Eα−µNα)/kBT . (4.10)

This defines the grand canonical ensemble.
From the condition that the sum of the probabilities of all microstates have to be 1,

1 =
∑
α

pα =
1

Z
∑
α

e−(Eα−µNα)/kBT , (4.11)

we obtain an explicit expression for the grand partition function,

Z =
∑
α

e−(Eα−µNα)/kBT . (4.12)

The connection with thermodynamics is provided by the grand potential Φ, defined as4

Φ = −kBT lnZ. (4.13)

It can be related to other thermodynamic variables as (Problem Sheet 3)

Φ = U − TS − µN. (4.14)

From this it follows that the entropy S, particle number N and pressure P of the system are given by
the derivatives

S = −
(
∂Φ

∂T

)
V,µ

, N = −
(
∂Φ

∂µ

)
T,V

, P = −
(
∂Φ

∂V

)
T,µ

. (4.15)

4Different authors use different symbols for the grand potential. A common choice is Ω, but it risks confusion with the
multiplicity. Another popular one is ΦG, but to simplify the notation, I have dropped the subscript.
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ensemble fixed variables probability of a microstate link with thermodynamics
Microcanonical U ,N ,V pα = 1/Ω S = kB ln Ω

Canonical N ,V pα = (1/Z)e−βEα F = −kBT lnZ

Grand canonical V pα = (1/Z)e−β(Eα−µNα) Φ = −kBT lnZ

Table 3: Summary of the different ensembles.

It is important to realise that in this description, the particle numberN is not fixed but it fluctuates,
just like energy U in the canonical ensemble. The chemical potential µ determines the mean particle
numberN , just like the temperature determines the mean energyE. In essence, the chemical potential
measures the willingness of the environment to give more particles to system 1. If µ is high, N will
also be high. One can also show that

∆N

N
∝ 1√

N
, (4.16)

and therefore the grand canonical ensemble actually agrees with the other ensembles in the thermo-
dynamic limit N → ∞. One is therefore free to choose whichever ensemble is the most convenient
for the given problem.

Chemical potential µ may seem like an abstract quantity that is hard to visualise, so it is useful
to keep in mind that its relation to particle number N is the same as the relation of temperature T to
energy U . When two systems are put in thermal contact, heat flows from higher to lower temperature.
When two systems are allowed to exchange particles, particles flow from higher to lower chemical
potential. In equilibrium, the chemical potentials of the two systems are equal.

Chemical potential can also be used to describe reactions in which particle species change, such
as chemical reactions. Let us, for instance, consider three particle species A, B and C and denote the
particle numbers of species X by NX. By definition, the chemical potential of species X is

µX = −T
(
∂S

∂NX

)
V,U

. (4.17)

Let us now assume that A and B can react and produce C, in the reaction

A + B↔ C. (4.18)

This reaction reduces NA and NB by one and increases NC by one. If we denote the initial particle
number of species X by N0

X, then after ∆ reactions, the particle numbers are

NA = N0
A −∆,

NB = N0
B −∆,

NC = N0
C + ∆. (4.19)

The reactions continue until the system reaches equilibrium. To find this state, we need to find the
value of ∆ that maximises the entropy of the system, i.e.,

∂S

∂∆
= 0. (4.20)

Using Eq. (4.19), we find

0 =
∂S

∂∆
= − ∂S

∂NA
− ∂S

∂NB
+

∂S

∂NC
=
µA + µB − µC

T
. (4.21)

242424



Statistical Physics, Spring 2010 Lecture NotesStatistical Physics, Spring 2010 Lecture NotesStatistical Physics, Spring 2010 Lecture Notes

Therefore, the equilibrium condition is

µA + µB = µC. (4.22)

More generally, for an arbitrary reaction to be in equilibrium, the total chemical potentials on the left
and right hand sides of the equation have to match.

4.2 Bose-Einstein and Fermi-Dirac Distributions

The grand partition function of a quantum gas is given by the sum over the occupation number nr of
all single-particle states r,

Z =

(∑
n0

∑
n1

· · ·

)
e−β

∑
r nr(εr−µ). (4.23)

Just like Eq. (3.71), this factorises,

Z =

(∑
n0

e−βn0(ε0−µ)

)(∑
n1

e−βn1(ε1−µ)

)
· · · =

∏
r

(∑
nr

e−βnr(εr−µ)

)
≡
∏
r

Zr, (4.24)

where
Zr =

∑
nr

e−βnr(εr−µ) (4.25)

can be interpreted as the partition function of the single-particle state r.
From Eq. (4.25) we can see that the probability that the single-particle state r has occupation

number nr is

pr,nr =
e−β(εr−µ)nr

Zr
. (4.26)

As a check, we can see that according to this, the probability that the system is in a given microstate
α = [n0, n1, . . .] is the joint probability of state 0 having occupation number n0, state 1 having
occupation number n1 etc., i.e.,

pα =
∏
r

pr,nr =
∏
r

e−β(εr−µ)nr

Zr
=
e−β

∑
r(εr−µ)nr∏
r Zr

=
e−β(Eα−µNα)

Z
, (4.27)

in agreement with Eq. (4.10).
For most thermodynamic quantities, it is enough to know the mean occupation numbers nr of

states r. They are collectively known as the distribution of particles. The mean occupation number
nr of state r is given by

nr =
∑
nr

nrpr,nr =
1

Zr

∑
nr

nre
−β(εr−µ)nr . (4.28)

We note that

∂Zr
∂εr

=
∑
nr

∂e−β(εr−µ)nr

∂εr
=
∑
nr

(−βnr)e−β(εr−µ)nr = −β
∑
nr

nre
−β(εr−µ)nr , (4.29)

so that we can write
nr = − 1

β

1

Zr
∂Zr
∂εr

= − 1

β

∂ lnZr
∂εr

. (4.30)
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The range of the summation in Eq. (4.25) depends on the nature of the particles. For bosons, we
have

Zr =

∞∑
nr=0

e−βnr(εr−µ) =

∞∑
nr=0

(
e−β(εr−µ)

)nr
. (4.31)

This is a geometric series and can be summed exactly (assuming µ < εr),

Zr =
1

1− e−β(εr−µ)
. (4.32)

We can then compute the mean occupation number using Eq. (4.30),

nr = − 1

β

∂

∂εr
ln

1

1− e−β(εr−µ)
=

1

β

∂

∂εr
ln
(

1− e−β(εr−µ)
)

=
1

β

−(−β)e−β(εr−µ)

1− e−β(εr−µ)
=

1

eβ(εr−µ) − 1
. (4.33)

This is known as the Bose-Einstein distribution, which is often abbreviated as BE. Because it only
depends on the energy ε of the state, we can drop the index r and write5

nBE(ε) =
1

eβ(ε−µ) − 1
. (4.34)

For fermions, the calculation of Zr is even simpler,

Zr =
1∑

nr=0

e−βnr(εr−µ) = 1 + e−β(εr−µ). (4.35)

The mean occupation number is then

nr = − 1

β

∂

∂εr
ln
(

1 + e−β(εr−µ)
)

= − 1

β

(−β)e−β(εr−µ)

1 + e−β(εr−µ)

=
1

eβ(εr−µ) + 1
. (4.36)

This is known as the Fermi-Dirac distribution (abbreviated FD). Again, we write it as a function of
energy,

nFD(ε) =
1

eβ(ε−µ) + 1
. (4.37)

We can summarize Eqs. (4.34) and (4.37) in one expression,

n(ε) =
1

eβ(ε−µ) ± 1
, (4.38)

where + corresponds to the Fermi-Dirac and − to the Bose-Einstein distribution. By looking at the
asymptotic behaviour, one can draw the following conclusions:

5Sturge and Trevena use the symbol f for Bose-Einstein and Fermi-Direc distributions.
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Figure 3: The shapes of Bose-Einstein, Fermi-Dirac and the classical Boltzmann distribution for
β = 4 and βµ = 1.

• When β(ε − µ) � 1 (which is valid for any ε if βµ � −1), the term ±1 becomes negligible,
and both distributions approach

n(ε)→ eβµe−βε ∝ e−βε, (4.39)

which agrees with the Boltzmann distribution obeyed by distinguishable particles. In that case,
nr = Npr = (N/Z)e−β(εr). In this limit, the quantum gas approaches a classical ideal gas,
but without the extensivity problem (3.77) (see Classwork 2). In this same limit, the mean
occupation number is also very low, nr � 1, and therefore it is natural that the difference
between bosons and fermions disappears.

• In the Fermi-Dirac distribution, the mean occupation number nFD(ε) approaches one when
ε � µ. Because one is the maximum number of particles in one state, this means that states
with low energies are fully occupied.

• In the Bose-Einstein distribution, the mean occupation number nBE(ε) diverges when ε → µ.
This means that for all occupation numbers to be finite, µ must be less than the ground state
energy,

µ < ε0. (4.40)

The shapes of the distributions are shown in Fig. 3.

5 Bosonic Gases

5.1 Black-body Radiation

Black-body radiation is thermal electromagnetic radiation, which we can think of as photons in
thermal equilibrium. Photons are bosons (since they have spin 1), so they are described by the Bose-
Einstein distribution. Because photons are massless, the they are always ultrarelativistic. For a given
momentum, there are two independent polarisation states (for instance vertical and horizontal).
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The chemical potential µ of a photon gas vanishes, because the number of photons is not con-
served. To see this concretely, consider a process in which a hydrogen atom absorbs a photon of
energy 12.1 eV. This takes the atom from its ground state n = 1 to an excited state n = 3. It then
decays first to state n = 2 and then back to ground state n = 1, emitting two photons of energies
1.9 eV and 10.2 eV. If we represent the photon by the symbol γ and the hydrogen atom by H, we can
write this reaction as

H + γ ↔ H + γ + γ. (5.1)

For this reaction to be in equilibrium, we must have

µH + µγ = µH + 2µγ , (5.2)

which implies µγ = 0.
Another way of understanding why µ = 0 is that the chemical potential tells how much bias

towards higher or lower particle number there is due to the interaction with the environment. As the
particle number is not conserved, it will always reach the same equilibrium value even if we try to
pump more photons into the system.

In fact, since the photon number cannot be fixed, there is no constraint in canonical partition
function Eq. (4.3). Without the constraint, the sum in Eq. (4.3) is the same as that in Eq. (4.12) with
µ = 0. One can therefore equally well say that we are using the canonical ensemble Eq. (4.3) but
ignoring the particle number, or that we use the grand canonical ensemble with µ = 0. We follow the
latter interpretation.

Because µ = 0, the mean occupation number nr of single-particle state r is

nr =
1

eβεr − 1
. (5.3)

As usual, the total internal energy is

U =
∑
r

nrεr =
∑
r

εr
eβεr − 1

. (5.4)

As in Section 3.4, we replace the sum over r by an integral over energy using the ultrarelativistic
density of states (3.67). Photons have two internal states, corresponding to two polarizations, so there
is a degeneracy factor g = 2, and we obtain

U =

∫ ∞
0

dε f(ε)
ε

eβε − 1
= g

∫ ∞
0

dε fUR
tr (ε)

ε

eβε − 1
=

8πV

h3c3

∫ ∞
0

dεε2
ε

eβε − 1
. (5.5)

A more useful quantity is the energy density u = U/V , and using ε = ~ω = hω/2π, we can write
is as an integral over frequency ω,

u =
8π

h3c3

∫ ∞
0

dε ε3

eβε − 1
=

∫ ∞
0

dω
~

π2c3

ω3

eβ~ω − 1
≡
∫ ∞

0
dω us(ω), (5.6)

where the spectral energy density us(ω) gives the contribution to the energy density from a given
frequency ω, and is

us(ω) =
~

π2c3

ω3

eβ~ω − 1
. (5.7)

This is the Planck radiation law, and it gives the spectrum of thermal radiation.
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Figure 4: The Planck radiation law (5.7) [solid curve] agrees with the Wien law (5.8) [dashed] at high
frequencies and with the Rayleigh law (5.9) [dotted] at low frequencies.

Historically, Planck introduced Eq. (5.7) as an interpolating formula between the empirical Wien
law

us(ω) =
~ω3

π2c3
e−β~ω, (5.8)

which agreed with experiments, and the theoretical prediction

us(ω) =
ω2

π2c3
kBT, (5.9)

which Rayleigh had derived from classical electrodynamics (see Fig. 4). Interestingly, the Rayleigh
result showed even without any experiments that classical physics cannot describe thermal radiation,
since Eq. (5.9) would give a divergent result for the energy density u.

We can do the integral in Eq. (5.6) using the standard integral (Appendix A)∫ ∞
0

dxx3

ex − 1
=
π4

15
, (5.10)

and we find

u =
π2k4

B

15~3c3
T 4 ≡ 4σ

c
T 4, (5.11)

where

σ =
π2k4

B

60~3c2
≈ 5.7× 10−8W/m2K4 (5.12)

is the Stefan-Boltzmann constant. The result (5.11) is known as the Stefan-Boltzmann law, and
gives the energy density of thermal radiation as a function of temperature.

In practice, the radiation from many hot sources is not fully thermal and is therefore not in full
agreement with the Planck law. However, the cosmic microwave background radiation is a notable
exception. It is radiation emitted when the universe became transparent as it was approximately
300000 years old. The spectrum of this radiation was measured by the COBE satellite in 1992 (see
Fig. 5), and it agrees amazingly well with the Planck law, much better than any other radiation. This
was a definiteve proof for the hot Big Bang theory in cosmology, and is also a beautiful demonstration
of the validity of both quantum mechanics and statistical physics.
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Figure 5: The spectrum of the cosmic microwave background as measured by the COBE satellite
http://lambda.gsfc.nasa.gov/product/cobe/. The plot shows both the theoretical predic-
tion and the data, but the agreement is so good that it is not possible to see the difference.

5.2 Bose-Einstein Condensation

As another example of a bosonic gas, let us consider N non-relativistic bosonic atoms at temperature
T . According to Eq. (4.33), the mean occupation number of state r is

nr =
1

eβ(εr−µ) − 1
. (5.13)

The total number of particles is therefore

N =
∑
r

nr. (5.14)

Since N is known, we can use this to fix the value of the chemical potential µ, but we will first have
to be able to calculate the sum.

To do this, we follow Section. 3.4, and replace the sum by an integral

N →
∫ ∞

0
dεf(ε)nBE(ε). (5.15)

For spin-0 atoms, the degeneracy factor is zero, g = 0, and the the density of states is given by
Eq. (3.65). Consequently, we find

N =
2πV

h3
(2m)3/2

∫ ∞
0

dε ε1/2nBE(ε). (5.16)

The chemical potential µ of a bosonic gas is limited by Eq. (4.40) to be negative, µ < 0, assuming
that the ground state energy is zero. This leads to an upper bound for the occupation numbers,

n(ε) <
1

eβε − 1
, (5.17)
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and consequently for the total number of particles,

N <
2πV

h3
(2m)3/2

∫ ∞
0

dε ε1/2

eβε − 1
. (5.18)

We can do this integral by changing the integration variable to x = βε,∫ ∞
0

dε ε1/2

eβε − 1
= β−3/2

∫ ∞
0

dxx1/2

ex − 1
= β−3/2

√
π

2
ζ

(
3

2

)
, (5.19)

where we have used a standard integral from Appendix A, and the numerical value of the zeta function
is ζ(3/2) ≈ 2.61. Therefore, we have the upper limit

N < V

(
2πm

βh2

)3/2

ζ

(
3

2

)
= V

(
2πmkBT

h2

)3/2

ζ

(
3

2

)
≡ Nmax(T ), (5.20)

where we have chosen to denote the upper limit by Nmax(T ).
Interestingly, if we keep N and V constant and decrease T , i.e., cool the system down in a rigid

container, we will eventually reach a point where N = Nmax(T ), and then Eq. (5.20) seems to say
that we cannot cool the system down any further. The system seems to have a minimum temperature
TB , which is determined by the equation N = Nmax(TB) and has the value

TB =
h2

2πmkB

(
n

ζ(3/2)

)2/3

, (5.21)

where n = N/V is the number density. This does not seem to make sense, since surely we should be
able to cool the system down to arbitrarily low temperatures, at least in principle.

And indeed, we had made a mistake by assuming that we can replace the sum by an integral (5.15).
Since limε→0 f(ε) = 0, the integral gives no weight to the ground state r = 0 of the system, since it
has ε = 0. If there happen to be a large number of particles in the ground state, this approximation
fails. To find out if this is the case, we count the ground state separately, and replace Eq. (5.15) by

N → n0 +

∫ ∞
0

dεf(ε)n(ε). (5.22)

When T > TB , we already had a consistent picture, so we do not expect this to change anything.
However, at T < TB , we assume that all the “extra” particles are in the ground state. That is, we write

n0 = N − 2πV

h3
(2m)3/2

∫ ∞
0

dε ε1/2

eβ(ε−µ) − 1

≈ N −Nmax = N − V
(

2πmkBT

h2

)3/2

ζ

(
3

2

)
= N

[
1−

(
T

TB

)3/2
]
, (5.23)

where on the second line, we have assumed that µ = 0 in the integral in Eq. (5.22)
Directly from the Bose-Einstein distribution (4.33) we also have another expression for n0,

n0 =
1

e−βµ − 1
, (5.24)

which we can solve for µ and find

µ = − 1

β
ln

(
1 +

1

n0

)
. (5.25)
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Since n0 ∝ N is generally large, we can Taylor expand this,

µ ≈ − 1

βn0
= −

[
1−

(
T

TB

)3/2
]−1

1

βN
, (5.26)

where we have also used Eq. (5.23).
Now, one has to ask how well the integral approximates the other low-lying energy states, given

that it failed so miserably with the ground states. Would the first excited state r = 1 also have a large
occupation number n1?

To answer this, let us first calculate its energy. According to Eq. (3.56), the momenta of the
particles are quantised as

~p =
h

2L
~n, (5.27)

where ~n is a vector of three positive integers. The ground state corresponds to ~n0 = (1, 1, 1). The
lowest three excited states all have the same energy, and correspond to different orientations of ~n0 =
(2, 1, 1). As we have chosen to normalise the ground state energy to zero, the energy of the first
excited state is

ε1 =
~p2

1 − ~p2
0

2m
=

h2

8mL2

(
~n2

1 − ~n2
0

)
=

h2

8mL2
(6− 3) =

3h2

8mL2
. (5.28)

Thus ε1 ∝ L−2 = V −2/3, and in the limit of very large volume, this is always much larger than
|µ| ∝ N−1 ∝ V −1. Thus,

ε1 � |µ|. (5.29)

Therefore, we can well approximate the mean occupation number of the first excited state as

n1 =
1

eβ(ε1−µ) − 1
≈ 1

eβε1 − 1
. (5.30)

From this we can immediately conclude that it was consistent to take µ = 0 in Eq. (5.23).
Further, if V is large, βε1 ∝ V −2/3 is always very small, and we can Taylor expand the exponen-

tial in Eq. (5.30),

n1 ≈
1

1 + βε1 − 1
=

1

βε1
� 1

β|µ|
= n0, (5.31)

where we have used Eq. (5.29). This means that the mean occupation number of the first excited state
is much less than that of the ground state. Since any higher states have even smaller mean occupation
numbers, we conclude that it is enough to treat the ground state separately, and all excited states can
be well approximated by the integral.

Thus, we have seen that at low temperatures T < TB , a macroscopic number of the particles are
in the ground state. This phenomenon is known as Bose-Einstein condensation and was predicted
by Einstein in 1924. A Bose-Einstein condensate has curious properties, since the particles in the
ground state carry no energy and do not move (since they have a stationary wave function). As a
consequence, they do not contribute to the internal energy density, pressure, viscosity or many other
macroscopic characteristics of the system. This means that at constant temperature and volume, these
properties do not change if one adds more particles into the system. They are therefore independent of
the particle density. For example, the pressure of a Bose-Einstein condensate does not increase when
it is compressed.
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Figure 6: The phase diagrams of helium isotopes 4He (left) and 3He (right). Images: Trevena,
http://ltl.tkk.fi/research/theory/he3.html

Figure 7: The measured occupation number of the ground state in 23Na. The solid curve is the
prediction (5.23). Image: http://physicsweb.org/articles/world/10/3/3
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For decades, the only example of a system that could be thought of as a Bose-Einstein condensate
was liquid 4He. The atoms of this helium isotope contain an even number of elementary particles, and
are therefore bosons. At a temperature of around 2K, it has a phase transition and becomes superfluid
(see Fig. 6). This is near the predicted Bose-Einstein condensation temperature, and the superfluid
phase has some similar characteristics to Bose-Einstein condensates. However, since it is a liquid, it is
clear the one cannot really assume the atoms are weakly interacting as in a Bose-Einstein condensate.
Interestingly, though, the 3He isotope, which is a fermion, also becomes superfluid but only at a much
lower temperature ≈ 2mK. On one hand the huge difference in the critical temperatures shows that
the bosonic nature of 4He plays an important role in superfluidity, but on the other, it does not seem
absolutely necessary since even fermionic 3He exhibits superfluidity.

Bose-Einstein condensation was finally confirmed unambiguously in 1995 by groups at Colorado
and MIT. They used very dilute atomic gases (23Na and 87Rb), so that the interactions between the
particles were extremely weak. The gas was trapped in a magnetic trap and cooled down to µK
temperatures. When the trap was removed, the gas expanded, and the number of particles in the
ground state could be measured from the way it expanded. As Fig. 7 shows the result agrees very well
with the theoretical prediction (5.23).

6 Fermionic Gases

6.1 Degenerate Fermion Gas

The behaviour of fermion gases at low temperature is very different from bosons. The are described
by the Fermi-Direct distribution (4.36),

nFD(ε) =
1

eβ(ε−µ) + 1
. (6.1)

At low temperatures, β → ∞, and therefore the exponent goes to either plus or minus infinity, de-
pending on the signs of (ε− µ), therefore we find

nFD
β→∞−→ θ(µ− ε) ≡

{
1 if ε < µ,
0 if ε > µ,

(6.2)

where we have used the step function θ(x) which is defined as

θ(x) =

{
1 if x > 0,
0 if x < 0.

(6.3)

This means that all states with ε < µ are filled, and there are no particles in any of the higher states.
In this case, the gas is said to be degenerate.6 The zero temperature value of µ is called the Fermi
Energy and denoted by εF ,

εF = µ|T=0. (6.4)

Sometimes one also talks about the Fermi temperature

TF =
εF
kB
, (6.5)

which has the significance that at T < TF the description as a degenerate fermion gas starts to be a
good approximation. Unlike in the case of bosons, there is no sharp phase transition.

6Do not confuse with the other meaning of the term degenerate discussed in Section 3.4.
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The total particle number is

N =
∑
r

nr →
∫ ∞

0
dε f(ε)nFD(ε). (6.6)

6.2 Non-Relativistic Degenerate Electron Gas

Let us now consider a degenerate electron gas. Electrons are fermions with spin 1/2, so the degeneracy
is g = 2. If the Fermi energy is much less than the rest energy of the particle, εF � mc2, the electrons
are non-relativistic, and the density of states is given by (3.65),

f(ε) = 2fNR
tr (ε) =

4πV

h3
(2m)3/2ε1/2. (6.7)

Using Eq. (6.2) we find that in the low-temperature limit the particle number becomes

N
T→0−→

∫ εF

0
dε f(ε) =

4πV

h3
(2m)3/2

∫ µ

0
dε ε1/2 =

4πV

h3
(2m)3/2 2

3
ε
3/2
F =

8πV

3

(
2mεF
h2

)3/2

.

(6.8)
In practice, we would usually know N (or n = N/V ), so it makes more sense to invert this result,
and write εF as a function of n,

εF =
h2

2m

(
3

8π
n

)2/3

. (6.9)

At zero temperature, we can also easily compute other properties of the fermion gas. The internal
energy is given by

U =
∑
r

εrnr →
∫ ∞

0
dε f(ε)εnFD(ε), (6.10)

and in the zero-temperature limit it approaches

U
T→0−→

∫ εF

0
dε f(ε)ε =

4πV

h3
(2m)3/2

∫ εF

0
dε ε3/2. (6.11)

Comparing with Eq. (6.8), we can write this as

U =
3

2
Nε
−3/2
F

∫ εF

0
dε ε3/2 =

3

2
Nε
−3/2
F × 2

5
ε
5/2
F =

3

5
NεF

=
3h2

10m

(
3

8π

)2/3 N5/3

V 2/3
. (6.12)

This means that on average, each particle carries energy (3/5)εF .
From Eq. (6.12), it is straightforward to calculate the pressure as

P = −
(
∂U

∂V

)
N,S

=
2

3
× 3h2

10m

(
3

8π

)2/3 N5/3

V 5/3
=

2

3

U

V
=

2

5
εFn, (6.13)

where we could assume that S is constant because we are at zero temperature.
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6.3 Ultrarelativistic Degenerate Electron Gas

There are also important examples of degenerate fermion gases in which the Fermi energy is much
higher than the rest energy, εF � mc2, and therefore the fermions are ultrarelativistic. Using the
ultrarelativistic density of translational states (3.67), and taking into account the two spin states, we
find the full density of states

f(ε) = gfUR
tr (ε) =

8πV

h3c3
ε2. (6.14)

We again calculate the number of particles N at zero temperature to determine the Fermi energy εF ,

N =

∫ εF

0
f(ε) =

8πV

h3c3

∫ εF

0
dε ε2 =

8πV

3h3c3
ε3F . (6.15)

Solving this for εF gives

εF = hc

(
3

8π
n

)1/3

, (6.16)

where n = N/V is the number density of particles.
The internal energy at zero temperature is

U =

∫ εF

0
dε εf(ε) =

8πV

h3c3

∫ εF

0
dε ε3 =

3N

ε3F

∫ εF

0
dε ε3 =

3N

4
εF =

3hc

4

(
3

8π

)1/3 N4/3

V 1/3
. (6.17)

Because entropy is constant at zero temperature, we can easily calculate the pressure,

P = −
(
∂U

∂V

)
S,N

=
1

3

U

V
=
hc

4

(
3

8π

)1/3

n4/3. (6.18)

6.4 White Dwarf Stars

White dwarfs are stars that have burned all their hydrogen. When that happens, the fusion reaction,
which normally supports stars against gravitational forces, stops, and the star collapses. As we will
see, when the density becomes high enough, the degeneracy pressure of the electrons in the star
becomes strong enough to withstand the gravitational forces and the collapse is halted. The result star
is a white dwarf.

We will do a simplified calculation, which will nevertheless give the correct picture of the physics
and a reasonably good estimate of the quantities involved. We calculate the energy Utot of the star,
including the gravitational and internal components Ug and U0, and determine the radius of the star
by minimising the total energy.

We assume that the density of the star is uniform, and that the gravitational potential energy is
given by

Ug ≈ −
GM2

R
, (6.19)

where G is Newton’s constant, M is the mass of the star and R is its radius. 7

The main contribution to the mass of the star comes from the protons and neutrons in it,

M ≈ Npmp +Nnmn, (6.20)

7It is not difficult to calculate Ug exactly if the density is uniform, and the result has an extra factor of 3/5. However, it
makes little sense to include this factor in the calculation, since the density of a real star would not be uniform, anyway.
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Figure 8: The total energy of a star as a function of its radius, for non-relativistic (left) and ultrarela-
tivistic (right) electrons.

where Np and Nn are the numbers of protons and neutrons, respectively, and mp and mn are their
masses. In a typical atom, the number of neutrons is roughly equal to the number of protons, so we
have Nn ≈ Np, and the masses of the two nucleons are also almost equal, mn ≈ mp. Therefore, we
can write the mass of the star as M ≈ 2Npmp. Because a star is not expected to have a significant
electric charge, it has to have an equal number of electrons and protons, Ne = Np, and therefore

M ≈ 2Nemp. (6.21)

The internal energy depends on whether the electrons are non-relativistic or ultrarelativistic.

(i) If εF � mec
2, the electrons are non-relativistic, and the internal energy is given by Eq. (6.12),

U0 =
3h2

10me

(
3

8π

)2/3 N
5/3
e

V 2/3
, (6.22)

where Ne is the number of electrons in the star and V = (4π/3)R3 is its volume.

Using Eq. (6.21), we find

U0 =
3h2

20mem
5/3
p

(
3

8π

)4/3 M5/3

R2
≡ CNR

M5/3

R2
, (6.23)

where we have included all the constant factors into one constant CNR.

The total energy is now

Utot(R) = Ug(R) + U0(R) ≈ CNR
M5/3

R2
− GM2

R
. (6.24)

The shape of this function is shown in Fig. 8. It has a single minimum, whose location Rmin

we can find by setting the derivative to zero,

0 =
∂Utot

∂R

∣∣∣∣
R=Rmin

= −2CNR
M5/3

R3
min

+
GM2

R2
min

, (6.25)

which gives

Rmin =
2CNR

G
M−1/3. (6.26)
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This is the equilibrium radius of the star, at which the degeneracy pressure of the electrons
balances the gravitational force. Interestingly, the more massive the star is, the smaller its
radius.

The Fermi energy can be calculated using Eq. (6.9), and is proportional to

εF ∝ n2/3 ∝
(

M

R3
min

)2/3

∝ (M2)2/3 = M4/3. (6.27)

This shows that the more massive the star is, the higher the Fermi energy. If the star is massive
enough, the Fermi energy will exceed mec

2, and the assumption that the electrons are non-
relativistic breaks down.

(ii) If εF � mec
2, the electrons are ultrarelativistic and we can use the results from Section 6.3.

According to Eq. (6.17), the internal energy is

U0 =
3hc

4

(
3

8π

)1/3 N
4/3
e

V 1/3
=

3hc

8m
4/3
p

(
3

8π

)2/3 M4/3

R
≡ CUR

M4/3

R
. (6.28)

The total energy is therefore

Utot(R) = Ug(R) + U0(R) ≈ CUR
M4/3

R
− GM2

R
=
(
CURM

4/3 −GM2
) 1

R
. (6.29)

This function has no minimum, so there is no equilibrium state. Depending on the sign of the
factor in the backets, we can have two different situations:

If M < (CUR/G)3/2, the factor is positive (see Fig. 8), and the star expands until the Fermi
energy has fallen close to me. Then the ultrarelativistic approximation is not valid any more,
and non-relativistic effects stabilise the star.

If M > (CUR/G)3/2, the factor is negative, and there is nothing to prevent the star from
shrinking. The star collapses until the degeneracy pressure of neutrons becomes strong enough
to stop it, and it becomes a neutron star. If the star is massive enough even the neutrons cannot
withstand the gravitational force, and it becomes a black hole.

The limiting mass

MCh =

(
CUR

G

)3/2

(6.30)

is known as the Chandrasekhar mass, and it is the highest possible mass that a stable white
dwarf can have. Its value is approximately 1.4 solar masses. Any star that is less massive than
this, for instance our Sun, will form a white dwarfs when it runs out of hydrogen. More massive
stars become neutron stars or black holes.
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A Mathematical Results

A.1 Combinatorics

How many ways are there to pick M objects out of the total of N?

(a) Permutations with Repetition: If each object can be picked several times, and the order in which
the objects were picked matters, the number of possible ways is

NM . (A.1)

(b) Permutations without Repetition: If each object can be picked only once, and the order in which
the objects were picked matters, the number of possible ways is

N(N − 1) · · · (N −M + 1) =
N !

(N −M)!
(A.2)

(c) Combinations with Repetition: If each object can be picked several times, and the order in
which the objects were picked does not matter, the number of possible ways is

(N +M − 1)!

M !(N − 1)!
. (A.3)

(d) Combinations without Repetition: If each object can be picked only once, and the order in which
the objects were picked does not matter, the number of possible ways is

N !

M !(N −M)!
. (A.4)

A.2 Stirling’s Formula

When N � 1,

lnN ! = N lnN −N +
1

2
ln 2πN +O(1/N) ≈ N lnN −N. (A.5)

Simple derivation of the less accurate form: Let us write

lnN ! =

N∑
p=1

ln p, (A.6)

and approximate this sum by an integral,

lnN ! ≈
∫ N

1
dp ln p = N lnN −N + 1 ≈ N lnN −N. (A.7)
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A.3 Gaussian Integrals

Gaussian integrals are of the form

In(a) =

∫ ∞
0

dxxne−ax
2
, (A.8)

with a > 0. The general result for them is

In(a) =
Γ
(
n+1

2

)
2a(n+1)/2

, (A.9)

where Γ(x) is the Euler gamma function. For integer arguments, the gamma function becomes just
the factorial,

Γ(k + 1) = k!. (A.10)

If n is odd (i.e., we can write n = 2k + 1), the result can therefore be written in a simple form

I2k+1(a) =
k!

2ak+1
. (A.11)

For a few of the lowest even values of n, one has

I0(a) =
1

2

√
π

a
, (A.12)

I2(a) =
1

4a

√
π

a
, (A.13)

and

I4(a) =
3

8a2

√
π

a
. (A.14)

By a change of variables, one find ∫ ∞
0

dt tx−1e−βt =
Γ(x)

βx
(A.15)

for x > 0. For example, ∫ ∞
0

dt t1/2e−βt =
Γ(3/2)

β3/2
=

1

2

√
π

β3
. (A.16)

A.4 Other Useful Integrals

Another common integral is ∫ ∞
0

xa

ex − 1
= Γ(1 + a)ζ(1 + a), (A.17)

where a > 0 and ζ(x) is the Riemann zeta function. Useful examples of this are∫ ∞
0

dx
x3

ex − 1
= Γ(4)ζ(4) =

π4

15
, (A.18)

and ∫ ∞
0

dx
x1/2

ex − 1
=

√
π

2
ζ

(
3

2

)
≈ 2.315. (A.19)

A related integral is ∫ ∞
0

dx x2 ln
(
1− e−x

)
= −2ζ(4) = −π

4

45
. (A.20)
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A.5 Sums

A.5.1 Geometric Series

The sum of a geometric series can be calculated exactly,

∞∑
n=0

xn =
1

1− x
, (A.21)

assuming that x < 1.

A.5.2 Multiple Summation

Manipulating multiple sums is a critical skill in statistical physics. We frequently encounter sums like∑
r1

· · ·
∑
rN

f(r1, . . . , rN ), (A.22)

where f is some function of the summation indices ri.
The notation · · · generally means repeating the same symbol or expression. When the dots are

between summations, it means multiple summation, i.e., summing over all N indices r1, . . . , rN . In
general, this is not a product. For instance,∑

r1

· · ·
∑
r4

f(r1, . . . , r4) ≡
∑
r1

∑
r2

∑
r3

∑
r4

f(r1, r2, r3, r4). (A.23)

What multiple summation means in practice is that you first do the innermost sum (rN ). You get
a result that depends on the indices r1, r2, . . . , rN−1. You sum this result over rN−1, and the result of
that sum over rN−2 and so on, until you have summed over all the indices ri.

Often in statistical physics, the summed function f(r1, . . . , rN ) is an exponential of the form

f(r1, . . . , rN ) = exp

[
N∑
i=1

xi(ri)

]
, (A.24)

where each xi depends only on one of the indices ri. Remember that the exponential of a sum is a
product of exponentials, so we have

exp

[
N∑
i=1

xi(ri)

]
=

N∏
i=1

exi(ri) ≡ ex1(r1) · · · exN (rN ). (A.25)

In this case, the multiple sum factorises because from the point of view of the sum over ri any factor
exj(rj) with j < i is a constant and can be taken outside the sum,

∑
r1

· · ·
∑
rN

exp

[
N∑
i=1

xi(ri)

]
=

∑
r1

· · ·
∑
rN

ex1(r1) · · · exN (rN ) =
∑
r1

ex1(r1) · · ·
∑
rN

exN (rN )

=

(∑
r1

ex1(r1)

)
· · ·

(∑
rN

exN (rN )

)
≡

N∏
i=1

(∑
ri

exi(ri)

)
.(A.26)
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Furthermore, of all the functions xi(r) are the same, i.e., xi(r) = x(r), then all the factors in this
product are equal, and we have

∑
r1

· · ·
∑
rN

exp

[
N∑
i=1

x(ri)

]
=

(∑
r

ex(r)

)N
. (A.27)
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B General Expression for Entropy

Consider first a system consisting of just a single particle, with single-particle states r ≥ 0. Its
macrostate is described by some ensemble, and we denote the probability that the particle is in state r
by pr. Our aim is to calculate the entropy of this macrostate.

To do this, it turns out to be useful to consider a system of N noninteracting distinguishable
particles first. Even though the particles are distinguishable, we can still consider the occupation
number nr of state r, defined as the number of particles in state r (see Section 2.2). However, knowing
the occupation numbers nr of all the single-particle states r. This does not specify the microstate of
the whole system, because the particles are distinguishable and we do not know which particle is in
which state. Instead, the occupation numbers define a macrostate of the system. The corresponding
microstates are different permutations of the states of the particles.

As the first step, let us calculate the entropy SN of this macrostate. Following the fundamental
postulate, we assume that all of the microstates (i.e. permutations of single-particle states) have equal
probability. According to Eq. (2.18), the entropy is given by the multiplicity Ω of the macrostate, i.e.,
how many microstates it corresponds to. The microstates are labelled by N integers (r1, . . . , rN ),
consisting of n0 zeros, n1 ones, n2 twos etc., and to obtain the multiplicity we need to count the
number of different permutations.

If all the integers were different, the number of permutations would be N !. However, the n1!
permutations that swap two 1s, do not change the microstate, and neither do the n2! permutations that
swap two 2s, not the nr! permutations that swap two rs. Thus, the number of different permutations
is (as a fairly straightforward generalisation of Eq. (A.4))

Ω =
N !

n1!n2! · · ·
=

N !∏∞
r=0 nr!

. (B.1)

The entropy of this macrostate is therefore

SN = kB ln Ω = kB

(
lnN !−

∞∑
r=0

lnnr!

)
, (B.2)

and using Stirling’s formula (A.7), we find

SN = kB

(
N lnN −N −

∞∑
r=0

nr lnnr +

∞∑
r=0

nr

)
= −kB

∞∑
r=0

nr ln
nr
N
, (B.3)

where we used the fact that
∞∑
r=0

nr = N. (B.4)

As the second step, let us go back to the original setup in which the particles follow the probability
distribution pr, rather than having having fixed occupation numbers nr. The mean occupation number
is given simply by

nr = Npr. (B.5)

When N is very large, we can replace nr with nr in Eq. (B.3). Therefore we have for a system of
N � 1 particles

SN = −kB
∞∑
r=0

nr ln
nr
N

= −NkB
∞∑
r=0

pr ln pr. (B.6)
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Assuming that entropy is extensive, the entropy of a single particle is then

S =
SN
N

= −kB
∞∑
r=0

pr ln pr. (B.7)

As the final step, we note that this result is general, and does not depend on what our “particle” is.
Therefore, even if we consider some macroscopic system in some ensemble pα, we can think of it as
the “particle”. The microstates α of our macroscopic system would correspond to the “single-particle
states” r. Applying Eq. (B.7), we see that for any system, even a macroscopic one, we have

S = −kB
∑
α

pα ln pα. (B.8)

This is the general result for the entropy of an ensemble. It is easy to check that it agrees with the
Boltzmann expression (2.18) in the case of the microcanonical ensemble.
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C Notation

C.1 Indices

α Microstate
i Particle
r Single-particle state

C.2 Quantities

β Inverse temperature
εr Energy of single-particle state r
Φ Grand potential
µ Chemical potential
Ω Multiplicity
E Total energy
f Density of states
F Free energy
g Degeneracy
nr Occupation number of single-particle state r
N Number of particles (number density=n)
pα Probability of microstate α
~p Momentum
P Pressure
S Entropy (entropy density=s)
T Temperature
U Internal energy (energy density=ρ)
V Volume
Z Grand partition function
Z Partition function

C.3 Constants

c Speed of light (= 299792458m/s)
h Planck’s constant (≈ 6.626× 10−34m2kg/s and ~ = h/2π)
kB Boltzmann’s constant (≈ 1.381× 10−23m2kg/s2K)
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