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Chapter 1

Complex Numbers

Complex analysis is one of the most awe-inspiring areas of mathematics. Begin-
ning with the notion of an imaginary unit, there follows an abundance of useful
and unexpected results, methods, and concepts. The story begins in the mid 1550s,
when the Italian mathematician Girolamo Cardano posed a problem that could not
be solved with real numbers, namely, the existence of two numbers whose sum is
10 and whose product is 40. If we call these numbers x and y, then we are looking
for a solution of

x + y = 10 and xy = 40 .

By solving these simultaneous equations for, say, y in terms of x , we obtain a
quadratic equation in x :

x2 − 10x + 40 = 0 .

The solutions to this equation yield

x = 5 ± √−15 , y = 5 ∓ √−15 ,

from which we see directly that the sum of these numbers is 10 and their product
is 40. Cardano did not pursue this, concluding that this result was ‘as subtle as it
is useless.’

Complex numbers did not arise from this example, but in connection with
the solution to cubic equations. Cardano presented formulae for the solutions of
certain cubic (and quartic) equations, within which there are square roots of num-
bers that could be negative. Cardano had serious misgivings about expressions
such as 2 + √−2 and, in fact, referred to thinking about them as ‘mental torture.’
Rafael Bombelli introduced the symbol i for

√−1 in 1572 and René Descartes
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2 Complex Numbers

Figure 1.1: The Mandelbrot set, which is a set of complex numbers whose bound-
ary is a fractal.

in 1637 called numbers such as a + √−b, where a is any real number and b is
a positive number, imaginary numbers. The term complex number, which is the
modern term for such numbers, seemed to have originated with Carl Friedrich
Gauss in 1831, who also popularized the idea of endowing imaginary quantities
with a ‘real’ existence as points in a plane.

The usage of complex numbers has developed tremendously in the intervening
years, and now forms a natural part of coordinate systems, vectors, matrices, and
quantum mechanics. As we discover more about advanced physics, complex num-
bers continue to become ever more significant. Recent examples include fractals,
such as the Mandelbrot set (Fig. 1.1), and string theory, which purports to have
the potential to be a ‘theory of everything.’

1.1 Imaginary and Complex Numbers

The solution of the quadratic equation

ax2 + bx + c = 0 , (1.1)

in which a, b, and c are real constants, is the familiar formula:

x = −b ± √
b2 − 4ac

2a
. (1.2)
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The key quantity here is the discriminant: b2 − 4ac. If b2 − 4ac > 0, then there
are two real solutions of Eq. (1.1) while, if b2 − 4ac = 0, there is only a single
real solution. What happens if b2 − 4ac < 0? There is clearly no real solution of
Eq. (1.1) in this case. This is the situation faced by Cardano in his formula for the
solution of cubic and quartic equations. If we introduce the symbol

i ≡ √−1 ,

such that i2 = −1, then we have at least a symbolic solution to this impasse. The
symbol i is called the imaginary unit.

EXAMPLE 1.1. Consider the quadratic equation

x2 + 4 = 0 . (1.3)

There are no real solutions to this equation, but by writing this equation as

x2 = −4 ,

we have that

x = √−4 = √−1 × 4 = √−1 ×
√

4 = ± 2 i . (1.4)

Thus, there are two solutions to Eq. (1.3): x = −2 i and x = 2 i .

Expressions of the form a i , in which a is any real number, are called imaginary
numbers.

EXAMPLE 1.2. Consider the quadratic equation

2x2 − 2x + 1 = 0 .

According to the quadratic formula (1.2), the solutions to this equation are

x = 2 ± √
4 − 8

4
= 2 ± √−4

4
= 1

2
±

√
−1

4
.

By proceeding as in (1.4), we find that the two solutions of this equation are

x = 1

2
− i

2
, x = 1

2
+ i

2
.
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Expressions of the form a + b i , in which a and b are real numbers, are called
complex numbers. The number a is called the real part of the complex number
and the number b, the coefficient of i , is called the imaginary part. When a
complex number is a variable, the conventional notation is z = x + i y, where x ,
the real part of z is denoted as Re(z) and y, the imaginary part of z, as Im(z):

z = x + i y ; Re(z) = x , Im(z) = y (1.5)

1.2 Algebra of Complex Numbers

The algebra of complex numbers is similar to that for real numbers, with the
proviso that the imaginary unit i has the property that i2 = −1. The rules below
show how to add, subtract, multiply, and divide complex numbers to obtain a result
that is of the form x + i y. In deriving these rules, we will need two properties of
complex numbers. Two complex numbers a + i b and c + i d, in which a, b, c,
and d are real numbers, are equal if and only if their real and imaginary parts are
separately equal:

a + i b = c + i d if and only if a = c and b = d .

As a special case of this statement, we have that a complex number a + i b is equal
to zero if only and only if the real and imaginary parts are each equal to zero:

a + i b = 0 if and only if a = 0 and b = 0 . (1.6)

1.2.1 Binary Composition Operations

Consider the addition of two complex numbers a + i b and c + i d, in which a, b,
c, and d are real numbers:

(a + i b) + (c + i d) = (a + c) + i (b + d) , (1.7)

that is, the real and imaginary parts are added separately. The rule for subtraction
is similarly applied:

(a + i b) − (c + i d) = (a − c) + i (b − d) .
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The multiplication of two complex numbers proceeds with the usual rule for dis-
tributive property of multiplication over addition:

(a + i b)(c + i d) = a(c + i d) + i b(c + i d)

= ac + i ad + i bc + i2bd

= (ac − bd) + i (ad + bc) . (1.8)

The division of complex numbers proceeds in two steps. Consider the quotient

a + i b

c + i d
.

We first multiply the numerator and denominator by the quantity c − i d,
(

a + i b

c + i d

)(
c − i d

c − i d

)
= (a + i b)(c − i d)

(c + i d)(c − i d)
.

and then carry out the multiplication in the numerator and denominator, using
Eq. (1.8):

a + i b

c + i d
= (ac + bd) + i (bc − ad)

c2 + d2

= ac + bd

c2 + d2
+ i

bc − ad

c2 + d2
, (1.9)

where we must mandate that c + i d �= 0 for this expression to be meaningful
which, according to Eq. (1.6), means that c �= 0 and d �= 0. Notice that, in
obtaining this quotient, we have used the fact that i × (−i) = 1, which is a
particular case of Eq. (1.8) with a = c = 0, b = 1 and d = −1. Note also the
following special cases of Eq. (1.9). If a = 1 and b = 0, we obtain the reciprocal
of a complex number as

1

c + i d
= c

c2 + d2
− i

d

c2 + d2
. (1.10)

If in this equation we first set c = 0, then setting d = 1 and d = −1 in turn,
produces

1

i
= −i and

1

−i
= i ,
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respectively.
To summarize, the algebraic rules for combining complex numbers are

For real numbers a, b, c, and d

(a + i b) ± (c + i d) = (a ± c) + i (b ± d) ,

(a + i b)(c + i d) = (ac − bd) + i (ad + bc) ,

a + i b

c + i d
= ac + bd

c2 + d2
+ i

bc − ad

c2 + d2
,

where, in the last operation, c �= 0 and d �= 0.

EXAMPLE 1.3. The sum of the complex numbers 1 + i and 2 − 3 i is carried out
according to Eq. (1.7):

(1 + i) + (2 − 3 i) = 3 − 2 i .

The square of the complex number 1 + i is calculated according to the product
rule in Eq. (1.8):

(1 + i)2 = (1 + i)(1 + i) = 1 + 2 i + i2

= 1 + 2 i − 1 = 2 i .

Finally, the quotient of the complex numbers 1−i and 1+i is calculated according
to Eq. (1.9):

1 − i

1 + i
= (1 − i)(1 − i)

(1 + i)(1 − i)

= 1 − 2 i + (−i)2

1 + i − i + i(−i)
= −2 i

2
= −i .
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1.2.2 Complex Conjugation

Given a complex number z = x + i y, the complex conjugate of z, denoted by z∗,
is the complex number

z∗ = x − i y .

The addition rule for complex numbers in Eq. (1.8) can be used to obtain the real
part of a complex number as

z + z∗ = (x + i y) + (x − i y) = 2x ,

so

Re(z) = z + z∗

2
.

Similarly, the imaginary part is obtained as

z − z∗ = (x + i y) − (x − i y) = 2 i y ,

so

Im(z) = z − z∗

2 i
.

Another useful property of the conjugate is

z z∗ = (x + i y)(x − i y) = x2 + y2 .

In particular, the reciprocal of z can be written as

1

z
= 1

z

(
z∗

z∗

)
= z∗

zz∗ = x

x2 + y2
− i

y

x2 + y2
,

which agrees with Eq. (1.10).
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1.3 The Complex Plane

The conventional notation z = x + i y of a generic complex number suggests
a graphical representation of complex numbers based on Cartesian coordinates
wherein z is associated with the ordered pair (x, y). The real axis corresponds
to the abscissa in this coordinate system and the imaginary part to the ordinate,
as depicted in Fig. 1.2(a). Thus, every point corresponds to a complex number.
When the x-y plane is used to represent complex numbers in this way, it is referred
to as the complex plane or as an Argand diagram.

An alternative representation of complex numbers that, for many purposes, is
more convenient than rectangular coordinates, is one based on polar coordinates.
The basic construction is shown in Fig. 1.2(b). A straight line runs from the
origin to the point (x, y). This line is characterized by two quantities: a length r
that measures its length, and an angle θ that specifies the angle between this line
and the x-axis. By convention, positive angles are taken in the counterclockwise
direction from the x-axis. The relationship between the rectangular and the polar
representations of complex numbers can be obtained from basic trigonometry.
The rectangular coordinates corresponding to the point (r, θ) are

x = r cos θ , y = r sin θ ,

and the polar coordinates of a point (x, y) are

r =
√

x2 + y2 , θ = tan−1
(

y

x

)
. (1.11)

Re( )

Im( )

z

z

y

x (x,y)
x+ i y

Re( )

Im( )

z

z

(x,y)

y

x

r

(a) (b)

Figure 1.2: The representation of a complex number z = x + i y in (a) rectangular
and (b) polar coordinates.
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Hence, we can write the polar form of a complex number z = x + i y as

z = x + i y = r(cos θ + i sin θ) . (1.12)

The quantity r is called the modulus or magnitude of z, and θ is called the argu-
ment or phase. In the next section we will find a more compact way of writing the
right-hand side of this expression that will have many far-reaching consequences.

EXAMPLE 1.4. Consider the complex

Re( )

Im( )

z

z

r
(3,1)

(3, 1)

number z = 3 + i , whose position in the
complex plane is shown at right. The po-
lar representation of this number is spec-
ified by the modulus r and argument θ ,
which are obtained from the relations in
(1.11) as

r =
√

32 + 12 =
√

10 ,

θ = tan−1(1
3

)
.

Also shown in the figure at right is the
complex conjugate z∗ = 3 − i of z. The radius is the same as that for z, but
the argument is now −θ . This is immediately apparent from Eq. (1.12):

z∗ = x − i y = r(cos θ − i sin θ) = r
[
cos(−θ) + i sin(−θ)

]
.

Notice that the complex conjugate of a complex number is obtained by reflection
across the real axis.

1.4 Euler’s Formula

The polar representation of a complex number in Eq. (1.12) contains the factor
cos θ + i sin θ . We will show in this section that this factor has special properties.
Suppose that we differentiate with respect to θ :

d

dθ
(cos θ + i sin θ) = − sin θ + i cos θ .
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By writing the negative sign in front of the sine term as i2, we obtain

d

dθ
(cos θ + i sin θ) = i2 sin θ + i cos θ = i(cos θ + i sin θ) ,

so the effect of the differentiation is simply to multiply the original expression by
a factor of i . Each successive derivative of this expression yields another multi-
plicative factor of i . Thus, the n derivative is

dn

dxn
(cos θ + i sin θ) = in(cos θ + i sin θ) .

We now have the required mathematical input to perform a Taylor series ex-
pansion of the function cos θ + i sin θ about θ = 0. Recall that, for a function
f (x), the Taylor series about x = 0 (which is called a Maclaurin series) has the
following form:

f (x) = f (0) + f (1)(0)x + 1

2!
f (2)(0)x2 + 1

3!
f (3)(0)x3 + · · ·

=
∞∑

n=0

f (n)(0)
xn

n!
,

in which the ‘zeroth derivative’ is the function itself and 0! = 1. The notation
f (n)(0) means that we take the n derivative of f and then set x = 0. For the
function at hand, we have that cos 0 = 1 and sin 0 = 0. Hence, for n = 1, 2, . . . ,

[
dn

dxn
(cos θ + i sin θ)

]∣∣∣∣
θ=0

= in ,

from which we obtain the following Taylor series:

cos θ + i sin θ = 1 + i θ + (i θ)2

2!
+ (i θ)3

3!
+ (i θ)4

4!
+ · · ·

=
∞∑

n=0

(i θ)n

n!
. (1.13)

To appreciate the significance of this result, consider the Taylor series for ex .
Using the fact that

d(ex)

dx
= ex ,
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and e0 = 1, we obtain

ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · =

∞∑
n=0

xn

n!
. (1.14)

The comparison of Eqs. (1.13) and (1.14) suggests the identification

cos θ + i sin θ = ei θ . (1.15)

This is known as Euler’s formula. The revolutionary nature of this formula be-
comes evident when we evaluate both sides for θ = π . With cos π = −1 and
sin π = 0, we obtain eiπ = −1. The exponential function ex for real x is never
negative. But, by allowing for an imaginary variable in the argument of the ex-
ponential, negative values arise quite naturally. Indeed, the familiar rules for the
manipulation of the exponential function, which can derived from the Taylor se-
ries (1.14),1 combined with imaginary arguments, leads to some new and useful
results. Equations (1.12) and the polar representation in (1.15) imply an especially
compact representation of z = x + i y:

z = r eiθ . (1.16)

EXAMPLE 1.5. Consider the multiplication of two complex numbers with unit
modulus (r = 1) and with arguments θ and φ:

cos θ + i sin θ = ei θ

cos φ + i sin φ = ei φ .

The product of these equations is

(cos θ + i sin θ)(cos φ + i sin φ) = ei θei φ .

Expanding the left-hand side according to Eq. (1.8) yields

cos θ cos φ − sin θ sin φ + i(sin θ cos φ + cos θ sin φ) .

1We have, for the moment, side-stepped the question of convergence of the series (1.13). This
will addressed in the next chapter
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By using the standard rule for the product of exponential functions, i.e. eaeb =
ea+b, together with Eq. (1.15), we obtain

ei θei φ = ei (θ+φ) = cos(θ + φ) + i sin(θ + φ) .

Equating the real and imaginary parts in the last two equations produces

cos(θ + φ) = cos θ cos φ − sin θ sin φ,

sin(θ + φ) = sin θ cos φ + cos θ sin φ,

which are the trigonometric identities for the sine and cosine of the sum of two
angles! Other identities can be derived by following analogous steps. Quite apart
from providing an additional level of confidence in our usage of Eq. (1.15), this
procedure is far easier to apply than the conventional method of deriving such
identities.

Finally, we note that the representation (1.16) is especially convenient for tak-
ing products and quotients of complex numbers. For any two complex numbers
z = r ei θ and z′ = r ′ei θ ′

, we have

z z′ = rr ′ei (θ+θ ′) ,

z

z′ = r

r ′ ei (θ−θ ′) .



Chapter 2

Functions of Complex Variables

The binary operations of addition, subtraction, multiplication, and division of
complex numbers are the basis for the assembly of composite expressions of com-
plex quantities, such as polynomials and power series. This opens the way to ex-
tending functions of real variables to functions of variables that extend over the
complex plane. Functions f of independent variables x and y that depend only
on the combination z = x + i y are called functions of a complex variable and
are denoted by f (z). We will be concerned in this course with what are called
the elementary functions: powers and roots, trigonometric functions and their in-
verses, exponential and logarithmic functions, as well combinations of such func-
tions. These functions can be defined by writing, for example, sin z, ez , and log z,
so that they become complex-valued quantities, having real and imaginary parts.
Complex-valued functions can exhibit some quite unexpected behavior compared
to their real counterparts, though most of the standard functions are real when
their arguments are real. An obvious exception is the square root function, which
becomes imaginary for negative arguments.

We will begin this chapter be examining the powers and roots of complex num-
bers. Since we can multiply z by itself and by any other complex number, we can
form any polynomial in z and, by extension, any power series. This will enable us
to define the power series of functions such as the exponential and trigonometric
functions by their Taylor series expansions. By adapting the discussion of the con-
vergence of real series to complex-valued series, the Taylor series of elementary
functions of complex variables will be shown to retain the convergence proper-
ties of their real-valued counterparts. Since the properties of these functions can
be derived from their Taylor series, they retain their familiar (and useful) proper-
ties for real arguments, while exhibiting a richer analytic structure with complex
arguments.

13
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2.1 Powers of Complex Numbers

As we noted in Sec. 1.4, products of complex numbers are most easily carried out
in the polar form z = r eiθ . The n-fold product of z is

zn = (
r eiθ)n = rneinθ .

Note that, for the particular case that r = 1, we have that

(
eiθ)n = (cos θ + i sin θ)n

= einθ = cos nθ + i sin nθ ,

which leads to De Moivre’s theorem:

(cos θ + i sin θ)n = cos nθ + i sin nθ . (2.1)

EXAMPLE 2.1. Consider De Moivre’s theorem for n = 2:

(cos θ + i sin θ)2 = cos2 θ − sin2 θ + 2i sin θ cos θ

= cos 2θ + i sin 2θ .

By equating real and imaginary parts in this equation, we obtain

cos 2θ = cos2 θ − sin2 θ ,

sin 2θ = 2 sin θ cos θ ,

which are standard double-angle trigonometric identities. Higher multiple-angle
identities are derived with an analogous procedure.

Powers of complex numbers are used in polynomials and powers series. We
consider first an example of successive powers of complex numbers.

EXAMPLE 2.2. Consider the powers of z = 1 + i . The successive powers zn are
straightforward to calculate:

z2 = 2 i, z3 = −2 + 2 i, z4 = −4 , z5 = −4 − 4 i, z6 = −8 i.
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Re(z)

Im(z)

(a)

Re(z)

Im(z)

(b)

Re(z)

Im(z)

(c)

Figure 2.1: The powers zn of (a) z = 1 + i , (b) z = 1
2(1 + i), and (c) z = (1 +

i)/
√

2. In each case, successive points are rotated by 1
4π in the counterclockwise

direction.

These points are plotted in the complex plane in Fig. 2.1(a). The expanding spiral
of the sequence of these powers is evident. The reason for this type of structure
can be seen from the polar representation

1 + i =
√

2 e
1
4 iπ ,

in terms of which the nth power is

(1 + i)n = (
√

2)n e
1
4 inπ = 2n/2 e

1
4 inπ .

Thus, each successive power results in a rotation by 1
4π in the counterclockwise

direction and, since
√

2 > 1, a larger radius, producing the expanding spiral in
Fig. 2.1(a).

Alternatively, if we now consider the sequence of powers of 1
2(1 + i), the

corresponding polar representation yields
[1

2(1 + i)
]n = 1√

2
e

1
4 inπ = 2−n/2 e

1
4 inπ .

Each successive power still results in a rotation by 1
4π in the counterclockwise

direction but, because the modulus 1
2

√
2 < 1, the corresponding points produce a

spiral that converges toward the origin, as shown in Fig. 2.1(b).
The marginal case is obtained for

z = 1 + i√
2

,

which has modulus unity. The polar representations of the successive powers of
this complex number are [

1√
2
(1 + i)

]n

= e
1
4 inπ ,
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which produces a cycle of eight points that are again separated by 1
4π [Fig. 2.1(c)].

From these examples, the general expression for the powers of a complex
number x + iy = r eiθ is

(x + iy)n = rn einθ .

We can use De Moivre’s theorem (2.1) to express these products in rectangular
form as

(x + iy)n = rn einθ = rn
(
cos nθ + i sin nθ

)
.

By invoking the usual rules for exponents, this expression is valid for all integers.

2.2 Roots of Complex Numbers

We now consider the inverse process of taking powers of complex numbers, taking
their roots. The general problem is to find a solution of the equation zn = a + ib,
where z = x + iy and a and b are fixed real numbers. We will focus on the case
of integer n in this section, and leave the more general case for a later section. We
again proceed by working through an example.

EXAMPLE 2.3. Consider the solution of z4 = 16, i.e. the fourth root of 16. Two
solutions, z = 2 and z = −2, can be obtained without reference to complex num-
bers. But, to obtain all the roots of this equation, we must use complex numbers.
We begin by writing the equation in terms of the polar representation of complex
numbers: z = r eiθ :

(r eiθ )4 = r4 e4iθ = 16 . (2.2)

The equation for the modulus, r4 = 16, yields r = 2, since r ≥ 0 always. To
obtain the solutions for the argument, we first write

16 = 16 e2nπ i , (2.3)

for n = 0, 1, 2, . . . , which clearly leaves the value of the modulus unaffected since
e2nπ i = 1 for any integer n. Thus, our solution for r is therefore also unaffected.
However, the solutions for the arguments of our roots now read

4θ = 0, 2π, 4π, 6π, 8π, . . . . (2.4)
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The reason for considering the additional angles in (2.3) becomes apparent when
we divide both sides of this equation by 4 to obtain the solutions

θ = 0,
π

2
, π,

3π

2
, 2π, . . . . (2.5)

Since θ = 0 and θ = 2π correspond to the same angle, and since each successive
rotation by 2π on the right-hand side of (2.4) yields an additive factor of 1

4π in
(2.5), we find that there are four distinct values of θ . These yield four solutions of
(2.2):

z1 = 2 ei0 = 2 ,

z2 = 2 e
1
2 iπ= 2 i ,

z3 = 2 eiπ = − 2 ,

z4 = 2 e
3
2 iπ= − 2 i .

Thus, in addition to two real roots, we have also found two imaginary roots, which
are complex conjugates (cf. Problem 8 of Classwork 1).

EXAMPLE 2.4. Consider the solution of z3 = 1 + i , i.e. the cube roots of 1 + i .
The most expedient method of solution is again based on the polar representation
of complex numbers:

z = r eiθ , 1 + i =
√

2 e
1
4 iπ . (2.6)

The equation to be solved is

(r eiθ )3 = r3 e3iθ

=
√

2 e
1
4 iπ =

√
2 e

1
4 iπ+2nπ i , (2.7)

where we have again added multiples of 2π to the argument of 1+i . The equation
for the modulus, r3 = √

2, yields 21/6. For the argument, we have

3θ = π

4
,
π

4
+ 2π,

π

4
+ 4π,

π

4
+ 6π, . . . .

Dividing both sides of this equation by 3, we obtain the solutions

θ = π

12
,

π

12
+ 2π

3
,

π

12
+ 4π

3
,

π

12
+ 6π

3
, . . .

= π

12
,

9π

12
,

17π

12
,

25π

12
, . . . .
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Since

25π

12
= π

12
+ 2π,

there are three distinct values of θ :

θ = π

12
,

9π

12
,

17π

12
= 15◦, 135◦, 255◦ .

The three solutions of Eq. (2.7) are therefore given by

z1 = 21/6 e
1

12 iπ

z2 = 21/6e
9

12 iπ

z3 = 21/6e
17
12 iπ .

There are several points about the calculations in Examples 2.2 and 2.3 that are
general characteristics of roots of complex numbers. The nth root of a complex
number has n distinct solutions, whose points in the complex plane are separated
by an angle of 2π/n. When connected by straight lines, these points form the
vertices of a regular n-sided polygon. Figure 2.2 shows the roots calculated in
Examples 2.3 and 2.4. In Example 2.3, the quartic roots of 16 lie on a circle of
radius 2, separated by 1

2π = 90◦, forming a square, while the cube roots of 1 + i
in Example 2.3 lie on a circle of radius 21/6 and are separated by 2

3π = 120◦,
forming an equilateral triangle.

Re(z)

Im(z)

(a)

Re(z)

Im(z)

(b)

Figure 2.2: The solutions of (a) z = 161/4 and (b) z = (1 + i)1/3 plotted in the
complex plane.
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We can now deduce the general expression for the roots of a complex number.
The solutions of zn = a + ib, where a and b are fixed real numbers, are obtained
by first writing this equation in polar form: rn einθ = ρ eiφ , where ρ and φ are the
modulus and argument, respectively, of a + ib. The nth roots of this number each
have modulus ρ1/n and arguments given by the n values

θ = φ

n
,

φ + 2π

n
,

φ + 4π

n
, . . . ,

φ + 2π(n − 1)

n
.

By invoking De Moivre’s theorem (2.1) we can write this result as follows. Given
a complex number a + i b whose polar form is ρ eiφ , the solution of zn = ρ eiφ is
given by the n complex numbers zk , for k = 0, . . . , n − 1:

zk = ρ1/n exp

[
i

(
φ

n
+ 2kπ

n

)]

= ρ1/n
[

cos

(
φ

n
+ 2kπ

n

)
+ i sin

(
φ

n
+ 2kπ

n

)]
.

We can now understand how the plot of the nth roots of a complex number
ρ eiφ appear on the complex plane. There are n equally spaced points on a circle
of radius ρ1/n , with adjacent points separated by an angle of 2π/n. The line that
connects the points is a regular n-sided polygon, so the roots are the vertices of
this polygon The polygon is tilted by φ/n, so that if φ = 0, i.e. of the number
whose root is taken is real, at least one vertex (root) lies on the real axis. Thus,
even without doing any calculations, the general features of the nth roots of a
complex number can be easily identified.

2.3 Complex Power Series

A polynomial of order n in the real variable x has the form

a0 + a1x + a2x2 + · · · + anxn ,

in which the coefficients ak are real numbers. A polynomial is a continuous func-
tion of x and is finite for any finite value of x . Only for x → ±∞ does the
polynomial become infinite. The derivatives of all orders exist and are continu-
ous, although all but the first n are identically zero.
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Maclaurin showed that the notion of a polynomial could be generalized to a
function represented by an infinite series

a0 + a1x + a2x2 + · · · , (2.8)

where

an = f (n)(0)

n!
= 1

n!

dn f

dxn

∣∣∣∣
x=0

.

If the derivatives are bounded, then the series converges to f (x) everywhere. Re-
markably, the values of the function everywhere are determined by the values of
the function and its derivatives at the origin. By the ‘convergence’ of an infinite
series, we mean that the sum of enough terms is as close to a fixed value S as
required, where S is the sum of the series. In other words, the sum of the series
approaches the value S as a limit. Taylor showed that the expansion could be taken
about any point x = a, not just the origin, thus generalizing the Maclaurin series.
We have based our discussion on real variables x , but polynomials and infinite
series can be constructed where x is replaced by the complex variable z = x + iy.

There are several tests that determine if an infinite series converges. One of
the simplest to apply is the ratio test. For an infinite series of complex numbers∑∞

n=0 An , consider the ratio ρ, defined by

ρ = lim
n→∞

∣∣∣∣ An+1

An

∣∣∣∣ .
The complex series converges if ρ < 1 and diverges if ρ > 1. If ρ = 1, the test is
inconclusive and another test for convergence must be used.

EXAMPLE 2.5. Consider the complex geometric series

∞∑
n=0

zn = 1 + z + z2 + · · · . (2.9)

In the notation used above, An = zn . Then, the quantity ρ in the ratio test is

ρ = lim
n→∞

∣∣∣∣ zn+1

zn

∣∣∣∣ = |z| .

Thus, the geometric series (2.9) converges if |z| < 1. Since |z| = 1 can be written
in polar form as

√
x2 + y2 = 1, which is equivalent to x2 + y2 = 1, the geometric

series converges for complex numbers z within a circle of unit radius centered at
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Re(z)

Im(z)

S0

S1

S2

S3

(a)

Re(z)

Im(z)

S9

S8

S7

(b)

Figure 2.3: The partial sums of the geometric series (2.9) for (a) z = 1
2(1 + i) and

(b) z = 1 + i . In (a) the partial sums are seen to converge toward 1 + i , which
is the sum of the series, while in (b) the partial sums form an expanding spiral
because 1 + i lies outside the radius of convergence of this series.

the origin. For this reason, we refer to the radius of convergence of a series (even
when the series resides on the real line).

Figure 2.3 shows the sequence of partial sums

SN =
N∑

n=0

zn

for z = 1
2(1 + i), which lies within the radius of convergence of the geometric

series (2.9), and for z = 1 + i , which lies outside of this radius. The convergence
in the first case is seen by the spiral that converges toward 1 + i , which is the
sum of the series. In the second case, however, the partial sums lie on a diverging
spiral, which is indicative of the divergence of the series.

For our purposes, the most important infinite series is the Maclaurin series for
ez , which is defined by

∞∑
n=0

zn

n!
. (2.10)

This is a generalization of the function ex for real x and a generalization of the
function eiθ that we introduced in Sec. 1.4. In the notation of the ratio test, we
have An = zn/n!, so

ρ = lim
n→∞

∣∣∣∣ zn+1n!

zn(n + 1)!

∣∣∣∣ = lim
n→∞

|z|
n + 1

= 0 .
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Thus, for any complex number with a finite modulus, we obtain ρ < 1, so the
series (2.10) has an infinite radius of convergence, and we can now confidently
make the identification

ez =
∞∑

n=0

zn

n!
, (2.11)

for any complex number z = x + iy. This representation is valid over the entire
complex plane and subsumes the special cases just mentioned, namely, ex and eiθ .
As an immediate consequence, we have

ez = ex+iy = exeiy = ex(cos y + i sin y) .

We will explore the complex exponential in more detail in the next section.

2.4 The Complex Exponential

We have seen in the preceding section that the complex function ez converges
everywhere in the complex plane. In this section, we will show that this function
has the all the properties of the real function ex and, moreover, that these follow
from the series representation (2.11).

2.4.1 The Cauchy Product

We first derive the product of power series. Suppose that we have two series,

∞∑
n=0

an = a0 + a1 + a2 + · · · .

∞∑
n=0

bn = b0 + b1 + b2 + · · · .

Their product is formed as follows:
( ∞∑

n=0

an

)( ∞∑
n=0

bn

)
= (

a0 + a1 + a2 + · · · )(b0 + b1 + b2 + · · · )

= a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · · .
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Note that this product has been written as an ascending series of linear combina-
tions of the ai b j such that i + j = n. Hence, we can write this product as a sum
as

( ∞∑
n=0

an

) ( ∞∑
n=0

bn

)
=

∞∑
n=0

(
n∑

k=0

akbn−k

)
. (2.12)

This is known as the Cauchy product of two series.

2.4.2 Products of Complex Exponentials

Consider the familiar rule: ez1+z2 = ez1 ez2 for complex numbers z1 and z2. That
this follows from the power series (2.11) can be seen by applying the Cauchy
product:

ez1 ez2 =
( ∞∑

n=0

zn
1

n!

) ( ∞∑
n=0

zn
2

n!

)
=

∞∑
n=0

n∑
k=0

zk
1

k!

zn−k
2

(n − k)!
. (2.13)

The right-hand side has been obtained from (2.12) by making the identifications

an = zn
1

n!
, bn = zn

2

n!
.

The interior sum on the right-hand side of (2.13) can be simplified by multiplying
and dividing by n!:

n∑
k=0

zk
1

k!

zn−k
2

(n − k)!
= n!

n!

n∑
k=0

zk
1

k!

zn−k
2

(n − k)!
= 1

n!

n∑
k=0

n!

k!(n − k)!
zk

1zn−k
2 .

By recalling the binomial theorem,

(a + b)n =
n∑

k=0

n!

k!(n − k)!
akbn−k ,

we see that

1

n!

n∑
k=0

n!

k!(n − k)!
zk

1zn−k
2 = (z1 + z2)

n

n!
,
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from which we conclude that

ez1 ez2 =
∞∑

n=0

(z1 + z2)
n

n!
= ez1+z2 . (2.14)

As special cases, we have

ez = ex+iy = ex eiy = ex(cos y + i sin y) ,

and

1

ez
= 1

ex(cos y + i sin y)
= e−x

cos y + i sin y

(
cos y − i sin y

cos y − i sin y

)

= e−x(cos y − i sin y) = e−x e−iy = e−(x+iy) = e−z .

Thus, combining this result with that in (2.14), we find that, for any integer n,
(ez)n = enz .

The main properties of the complex exponential function are summarized be-
low:

ez = ex(cos y + i sin y) ,

|ez| = ex > 0 ,

ez1+z2 = ez1 ez2 ,

e−z = 1

ez
,

(ez)n = enz , for any integer n .

2.5 Complex Trigonometric Functions

The properties of the complex exponential function can be used to define trigono-
metric functions with complex arguments. We begin with Euler’s formula (1.15):

eiθ = cos θ + i sin θ , (2.15)

e−iθ = cos θ − i sin θ . (2.16)
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Taking the sum of these equations causes the imaginary part to vanish, leaving

eiθ + e−iθ = 2 cos θ ,

or,

cos θ = eiθ + e−iθ

2
.

Similarly, subtracting (2.16) from (2.15) yields

eiθ − e−iθ = 2i sin θ ,

or,

sin θ = eiθ − e−iθ

2i
.

With the trigonometric functions expressed in terms of the exponential func-
tion, we can now examine the properties of these functions with complex argu-
ments. Consider first the complex cosine function:

cos z = cos(x + iy) = 1
2

[
ei(x+iy) + e−i(x+iy)

]

= 1
2

(
eix e−y + e−i x ey)

= 1
2

[
(cos x + i sin x) e−y + (cos x − i sin x) ey]

= cos x

(
ey + e−y

2

)
− i sin x

(
ey − e−y

2

)

= cos x cosh y − i sin x sinh y , (2.17)

where we have used (2.28) to identify the hyperbolic functions cosh y and sinh y.
Since the trigonometric and hyperbolic functions are real-valued functions, we
have that

Re(cos z) = cos x cosh y , Im(cos z) = − sin x sinh y .
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Note, in particular, the special case where x = 0:

cos iy = cosh y ,

so the hyperbolic cosine corresponds to the cosine of an imaginary angle. We
could also have deduced this from the exponential representations of these func-
tions. A similar calculation to that leading to (2.17) for the complex sine function
yields

sin(x + iy) = sin x cosh y + i cos x sinh y , (2.18)

and

sin iy = isinh y .

Equations (2.17) and (2.18) can be used to determine the moduli of cos z and
sin z. For cos z, we have

| cos z|2 = cos2 x cosh 2y + sin2 x sinh2y

= cos2 x(1 + sinh2 y) + sin2 x sinh2y

= cos2 x + sinh2 y (cos2 x + sin2 x)

= cos2 x + sinh2 y ,

which implies that

| cos z| =
√

cos2 x + sinh2 y .

A similar calculation produces

| sin z| =
√

sin2 x + sinh2 y .

These relations show that cos z and sin z are unbounded. For example,

| cos z| =
√

cos2 x + sinh2 y ≥
√

sinh2 y = |sinh y| .
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Referring to (2.28), we see that, since

sinh y = ey − e−y

2
,

then, as y → ∞, sinh y → ∞ and, as y → −∞, sinh y → −∞. Hence,
| cos z| → ∞ as |Im(z)| → ∞.

All of the properties of the complex trigonometric functions follow from the
basic relations in (2.17) and (2.18):

cos z = cos x cosh y − i sin x sinh y ,

sin z = sin x cosh y + i cos x sinh y .

The other standard trigonometric functions can be obtained from these rela-
tions. For example, the complex tangent tan z and the complex secant sec z are
defined as

tan z = sin z

cos z
, sec z = 1

cos z
, (cos z �= 0) .

2.6 The Complex Logarithm

For real variables, the logarithm is defined as the inverse of the exponential func-
tion. Accordingly, if y = ex , then x = ln y, where ‘ln’ signifies the natural
logarithm, i.e. the logarithm to base e. The same relationship exists between the
complex exponential and the complex logarithm. For complex numbers z and w,

z = ew −→ w = ln z . (2.19)

We see immediately from this definition that, for complex numbers z1, z2, w1, and
w2, where z1 = ew1 and z2 = ew2 ,

z1 z2 = ew1 ew2 = ew1+w2 ,

which, according to (2.19), implies that

ln z1 z2 = w1 + w2 = ln z1 + ln z2 ,
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so the familiar rule for the logarithm of a product is recovered. The evaluation of
the complex logarithm is most naturally carried out in terms of the polar represen-
tation z = r eiθ :

w = ln z = ln(r eiθ )

= ln r + ln eiθ

= ln r + iθ . (2.20)

The first term on the right-hand side of this equation is the usual logarithm of the
real positive number r . The second term has an inherent ambiguity, which can be
seen from the polar representation. Since a rotation of θ by any integer multiple
of 2π leaves the polar representation unaltered, i.e.

z = r eiθ = r ei(θ+2nπ) ,

for any integer n, the logarithm is multi-valued, since for each value of n

w = ln r + i(θ + 2nπ) ,

corresponds to the same point. To define a unique logarithm associated with a
complex number, we must restrict the range of θ to an interval of length 2π .
There are two such intervals that are commonly used: (i) 0 ≤ θ < 2π , and (ii)
−π < θ ≤ π . We will use (i) here. Thus,

ln z = ln r + iθ , 0 ≤ θ < 2π . (2.21)

EXAMPLE 2.6. Unlike the logarithm for real arguments, the complex logarithm
can also be defined for negative real numbers. Suppose we have a negative number
x , which we represent as −|x |. Since the negative real numbers correspond to
θ = π in the complex plane,

ln(−|x |) = ln |x | − iπ.

Consider the logarithm of z = 1 + i . In polar form, z = √
2 e

1
4 iπ , so

ln(1 + i) = ln
√

2 + 1
4 iπ.
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2.7 Complex Powers

In analogy with real powers, we can define a complex power of a non-zero com-
plex number by utilizing the inverse relationship between the exponential and the
logarithm:

za = eln za = ea ln z , (2.22)

in which we interpret the logarithm as in the preceding section in terms of its
principal value.

EXAMPLE 2.7. Consider the complex number (1 + i)2. We will evaluate this
quantity in two ways: by direct expansion and by applying (2.22). We first calcu-
late

(1 + i)2 = (1 + i)(1 + i) = 1 + 2 i − 1 = 2 i.

Alternatively, with 1 + i = √
2 e

1
4 iπ , we have

(1 + i)2 = e2 ln(1+i) = e2(ln
√

2+ 1
4 iπ) = eln 2 e

1
2 iπ = 2 i,

which agrees with the result of the direct expansion.
Consider now the evaluation of i i . With i = e

1
2 iπ , we obtain

i i = ei ln i = ei( 1
2 iπ) = e− 1

2 π ,

which is a real number! Finally, we calculate (1 + i)1+i :

(1 + i)1+i = e(1+i) ln(1+i)

= e(1+i)(ln
√

2+ 1
4 iπ)

= e(1+i) ln
√

2+ 1
4 (1+i)iπ

= eln
√

2− 1
4 πei(ln

√
2+ 1

4 π)

=
√

2 e− 1
4 π

[
cos

(
ln

√
2 + 1

4π
) + sin

(
ln

√
2 + 1

4π
)]

.
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Appendix 1: Hyperbolic Functions∗

Trigonometric functions are defined by the diagram shown in the left panel of
Fig. 2.4 as the coordinates of a point that lies on the unit circle centered at the
origin. The coordinates of this point are given by the cosine and sine functions
in terms of an angle θ with respect to the x-axis in the counterclockwise direc-
tion: (cos θ, sin θ). The standard properties of trigonometric functions follow
from this construction, e.g. cos2 θ + sin2 θ = 1. This also explains why trigono-
metric functions are sometimes referred to as ‘circular’ functions.

Hyperbolic functions are based on the construction in the right panel in Fig. 2.4.
The coordinates of any point on the positive branch of the hyperbola x2 − y2 = 1
(i.e. the branch for which x > 0) are defined in terms of the hyperbolic sine
and cosine and the hyperbolic angle t as (cosh t, sinh t). Explicit formulas for
these hyperbolic functions can be obtained by showing that the hyperbolic angle
is equal to twice shaded area in Fig. 2.4. To calculate this area, we first note that
the equation of the line from the origin to (cosh t, sinh t) on the hyperbola is

y = sinh t

cosh t
x ,

x

y

cos

sin

x

y

x

y

cosh

sinh

t

t

Figure 2.4: The constructions used to define trigonometric and hyperbolic func-
tions. The left panel shows the circle x2 + y2 = 1 on which the coordinates of
any point are given by (cos θ, sin θ), where θ is the orientation of the point with
respect to the x-axis. The right panel shows the analogous construction for hyper-
bolic functions. Any point on the positive branch of the hyperbola x2 − y2 = 1
can be represented by a point t , which corresponds to twice the shaded area in the
diagram. The coordinates of this point are (cosh t, sinh t).
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where the range of x is 0 ≤ x ≤ cosh t . Therefore, the hyperbolic angle t is
determined by calculating the area that is shown shaded in Fig. 2.4, which is twice
the area associated with this angle. The shaded area in Fig. 2.4 is given by

t = 2

(∫ cosh t

0

sinh t

cosh t
x dx −

∫ cosh t

1

√
x2 − 1 dx

)
. (2.23)

The first integral on the right-hand side of this equation is straightforward to eval-
uate, and we obtain

∫ cosh t

0

sinh t

cosh t
x dx = sinh t

cosh t

∫ cosh t

0
x dx

= sinh t

cosh t

(
x2

2

∣∣∣∣
cosh t

0

)
= 1

2 sinh t cosh t . (2.24)

The second integral on the right-hand side of (2.23) is carried out by invoking the
indefinite integral,

∫ √
x2 − 1 dx = 1

2 x
√

x2 − 1 − 1
2 ln

(
x +

√
x2 − 1

)
,

which is derived in Appendix 2. We thereby obtain

∫ cosh t

1

√
x2 − 1 dx =

[
1
2 x

√
x2 − 1 − 1

2 ln
(
x +

√
x2 − 1

)]∣∣∣cosh t

1

= 1
2 cosh t

√
cosh2 t − 1 − 1

2 ln
(
cosh t +

√
cosh2 t − 1

)

= 1
2 sinh t cosh t − 1

2 ln(cosh t + sinh t) (2.25)

Substitution of (2.24) and (2.25) into (2.23) yields

t = ln(cosh t + sinh t) . (2.26)

A similar calculation for the hyperbolic angle −t , which has the coordinates
(cosh t, −sinh t), yields

−t = ln(cosh t − sinh t) . (2.27)
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Exponentiating (2.26) and (2.27) and solving for cosh t and sinh t yields

cosh t = et + e−t

2
,

sinh t = et − e−t

2
.

(2.28)

Hyperbolic functions have some formal similarities with trigonometric functions,
but also appreciable differences. For example, because the hyperbolic angle t lies
on the hyperbola x2 − y2 = 1, we have that

cosh2t − sinh2t = 1 .

Their derivatives are calculated as

d cosh t

dt
= et − e−t

2
= sinh t ,

d sinh t

dt
= et + e−t

2
= cosh t .

Functions analogous to their trigonometric counterparts can also be defined for
hyperbolic functions, e.g.

tanh t = sinh t

cosh t
.

Hyperbolic functions occur in several applications:

1. Advanced treatments of special relativity.

2. Solutions to several fundamental differential equations in mathematical physics.

3. The evaluation of integrals by methods analogous to trigonometric substi-
tution.
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Appendix 2: Integral for Hyperbolic Functions∗

The calculation of the hyperbolic angle in (2.23) requires the evaluation of the
following integral: ∫ √

x2 − 1 dx . (2.29)

We proceed by changing the integration variable from x to s according to

x = 1
2(es + e−s) . (2.30)

The integrand becomes
√

x2 − 1 =
{[1

2(es + e−s)
]2 − 1

}1/2

= (1
4e2s + 1

2 + 1
4e−2s − 1

)1/2

= (1
4e2s − 1

2 + 1
4e−2s)1/2

=
{[1

2(es − e−s)
]2

}1/2

= 1
2(es − e−s) .

The integration element is transformed to

dx = 1
2(es − e−s) ds .

The integral in (2.29) is thereby written in terms of s as

1

4

∫
(es − e−s)2 ds = 1

4

∫
(e2s − 2 + e−2s) ds

= 1

4

(
e2s

2
− 2s − e−2s

2

)

= 1
8 e2s − 1

2 s − 1
8 e−2s ,

where we have omitted the arbitrary additive constant. We must now express this
in terms of the original variable. By writing the transformation (2.30) as

es + e−s = 2x ,
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and multiplying by es , we obtain a quadratic equation in es :

e2s − 2x es + 1 = 0 .

The solution for es is given by the quadratic formula:

es = 1
2

(
2x ±

√
4x2 − 4

) = x ±
√

x2 − 1 .

Since e−s is a solution of the same quadratic equation, and since es > e−s , we
must have that

e±s = x ±
√

x2 − 1 .

Hence, we find that

1
8 e2s − 1

2 s − 1
8 e−2s

= 1
8

(
x +

√
x2 − 1

)2 − 1
2 ln

(
x +

√
x2 − 1

) − 1
8

(
x −

√
x2 − 1

)2

= 1
2 x

√
x2 − 1 − 1

2 ln
(
x +

√
x2 − 1

)
.

Thus, the integral in (2.29) is given by

∫ √
x2 − 1 dx = 1

2 x
√

x2 − 1 − 1
2 ln

(
x +

√
x2 − 1

)
.



Chapter 3

First-Order Differential Equations

Many physical phenomena are described in terms of a function whose value at a
given point depends on its values at neighboring points. Thus, the equation deter-
mining this function contains derivatives of the function, such as a first derivative
to indicate the slope or a velocity, a second derivative to indicate the curvature or
an acceleration, and so on. Such an equation, which establishes a relation between
the function and its derivatives, is called a differential equation.

There are two main types of differential equation. A differential equation for a
function of a single independent variable contains only ordinary derivatives of that
function and is called an ordinary differential equation. A differential equation
for a function of two or more independent variables contains partial derivatives of
the function and therefore is called a partial differential equation. In this course,
we will be concerned with ordinary differential equations.

Ordinary differential equations were introduced to describe the motion of dis-
crete particles under the action of known applied forces. The groundwork for such
applications was provided by Newton’s work on mechanics, particularly the sec-
ond law of motion, and the development of calculus by Newton and Leibniz. Such
differential equations are expressed with time as the independent variable and the
coordinates of the particles as the dependent variables. The study of phenomena
associated with continuous media, such as the motion of fluids and the transmis-
sion of sound and other disturbances established the need for partial differential
equations. In such cases, the independent variables are the position and time coor-
dinates of points within the medium and the dependent variables are the quantities
associated with the medium, such as the velocity of a fluid and its density.

The fundamental equations at the heart of almost all areas of science and en-
gineering are expressed as differential equations. Among the best known of these
are Newton’s second law of motion in mechanics, Maxwell’s equations in electro-
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magnetism, Schrödinger’s equation and Dirac’s equations in quantum mechanics,
the Navier–Stokes equation in fluid mechanics and aerodynamics, Einstein’s equa-
tions in general relativity, the Fokker–Planck equation in nonequilibrium statisti-
cal mechanics, the Hodgkin–Huxley equation in cellular biology, and the Black–
Scholes equation in quantitative finance. The widespread use of differential equa-
tions is evident in many aspects of modern life, including weather prediction,
transportation, communication, and macroeconomic forecasting, to name just a
few. In all of these cases, the differential equations embody the characteristics of
specific natural or social phenomena, often manifesting unexpected complexity,
which are most clearly revealed by examining their solutions in particular cases.

3.1 Notation and Nomenclature

An ordinary differential equation for a function y of a single independent variable
x is a functional relationship between x , y and the derivatives of y. The order
of a differential equation is the order of the highest derivative appearing in the
differential equation. For example, the most general form of a first-order ordinary
differential equation is

F(x, y, y′) = 0 ,

which, for the equations we will study, is written as

dy

dx
= f (x, y) .

The general form of an nth-order ordinary differential equation is given by the
expression

F
[
x, y, y′, . . . , y(n)

]
= 0 . (3.1)

If the function F in these equations is a polynomial in the highest-order derivative
of y appearing in its argument list, then the degree of the differential equation is
the power to which this highest derivative is raised, i.e. the degree of that polyno-
mial. An equation is said to be linear if F is of first degree in y and in each of
the derivatives appearing as arguments of F . Thus, the general form of a linear
nth-order ordinary differential equation is

an
dn y

dxn
+ · · · + a1

dy

dx
+ a0y = f (x) , (3.2)
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where f (x) and the coefficients a1, . . . , an are known quantities. If f = 0 this
differential equation is said to be homogeneous; otherwise, it is inhomogeneous.
In the next chapter, we will examine the solutions of second-order equations, both
with and without the homogeneous term:

a2
d2y

dx2
+ a1

dy

dx
+ a0y = f (x) .

3.2 Radioactive Decay

We begin our discussion with first-order equations. Our first example is based on
the phenomenon of radioactive decay. We denote by Q(t) the amount of material
present at time t . This material decays at a rate r proportional to the amount of
material present. The differential equation that describes this process is

d Q

dt
= −r Q , (3.3)

where the minus sign indicates that the amount of material decreases with time.
We will solve this equation by using two standard methods.

3.2.1 Method 1: Trial solution

We attempt to solve this equation with a solution of the form Q(t) = emt , where
m is a constant that is to be determined. The method of trial solutions with expo-
nential functions is based on the following property:

dnemx

dxn
= mn emx ,

for any positive integer n. Substituting our trial solution into Eq. (3.3), we find

d Q

dt
= memt = −remt ,

or,

(m + r)emt = 0 .

We cannot set emt = 0 because that would yield the trivial solution. However,
we can satisfy this equation and obtain a solution if we set m = −r (since the
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exponential is nonzero for finite x and finite m). The most general solution we
can write for Eq. (3.3) is, therefore,

Q(t) = A e−r t ,

where A is any constant. We can determine A by appealing to the physical situa-
tion described by our differential equation. If we set t = 0, then Q(0) corresponds
to the amount of material initially present, which we denote by Q0. Accordingly,
Q(0) = A = Q0. Thus, the solution of Eq. (3.3) for the amount of material at
time t is

Q(t) = Q0e−r t . (3.4)

This shows that a unique solution is obtained not just by solving the differential
equation, but by also imposing initial conditions that are appropriate for circum-
stances of the physical problem at hand. The solution (3.4) is plotted in Fig. 3.1.
The characteristic exponential decay is clearly evident. With increasing r , the rate
of decay is considerably faster because this factor appears in the argument of an
exponential function.
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0.6

0.8
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r = 0.1

r = 0.2
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t

Q
(t

)

Q
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Figure 3.1: The solution in Eq. (3.4) plotted as Q(t)/Q0 against t for three values of the
rate constant r . With increasing r , the amount of material at time t decreases substantially.
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3.2.2 Method 2: Separation of Variables

The separation of variables is straightforward to set up and carry out, but some
aspects of this implementation require a justification. Suppose that we have Q at
some time t . We can estimate Q at some late time t + �t by performing a Taylor
series to first order in �t :

Q(t + �t) = Q(t) + d Q

dt
�t .

We can now use the equation (3.3) governing radioactive decay to substitute for
d Q/dt whereupon, after a simple rearrangement, we obtain

Q(t + �t) − Q(t)

Q(t)
= −r�t . (3.5)

This equation is valid at any time t and becomes more accurate as �t becomes
smaller. Suppose that we require the solution Q to (3.3) from an initial time 0 to
some later time t . We divide this time interval into N equal segments �tN = t/N ,
so that the nth time increment tn = n�tN , with t0 = 0 and tN = t . For each n
(3.5) can be written as

Q(tn+1) − Q(tn)

Q(tn)
= −r�t .

We now sum this equation over n,

N−1∑
n=0

Q(tn+1) − Q(tn)

Q(tn)
= −r

N−1∑
n=0

�t ,

where we have taken the sum only to N − 1 because Q is evaluated at tn+1 which,
at this upper limit, corresponds to tN = t . Both sides of this equation are discrete
approximations to integrals (called Riemann sums). By decreasing �t toward zero
(i.e. making N larger) these sums provide correspondingly better approximations
to the integrals and, in the limit that N → ∞, we have

∫ Q(t)

Q(0)

d Q′

Q′ = −r
∫ t

0
dt ′ . (3.6)

The primes on the integration variables have been introduced to avoid confusion
with the limits of integration. Because the dependent variable (Q) appears only
on the left-hand side of the equation, and the independent variable (t) appears
only on the right-hand side, these variables are said to have been separated and
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the resulting equation can be integrated directly. Thus, with Q(0) = Q0, we can
integrate (3.6) to obtain

ln Q′
∣∣∣∣

Q(τ )

Q0

= ln

[
Q(t)

Q0

]
= −r t ,

or, after exponentiating and solving for Q(t),

Q(t) = Q0e−r t ,

which is the same as the solution in (3.4).
Although our development of the separation of variables method looks some-

what cumbersome, there is a short-cut that considerably simplifies the procedure.
We begin by rearranging the equation (3.3) for radioactive decay as

d Q

Q
= −r dt . (3.7)

Equation (3.5) is the discrete analogue of this equation, which has been obtained
by interpreting the derivative d Q/dt as a fraction, rather than as an operation on
a function. This can be justified only as an intermediate step toward integrating
this equation from t = 0, where Q = Q(0) = Q0, to some later time t , where
Q = Q(t):

∫ Q(t)

Q(0)

d Q′

Q′ = −r
∫ t

0
dt ′ .

which is (3.6). The virtue of this somewhat loose interpretation of the mathemat-
ical formulation of the separation of variables method is that it is easy to apply
and one can usually identify differential equations that are separable directly by
inspection.

In summary, the advantage of the trial solution method is that it can be applied
to higher-order equations, as we will show in the next chapter for second-order
equations, but only to linear equations. The separation of variables method can
be applied to certain types of nonlinear equations, as we will shown in the next
section, but only to first-order equations.

3.3 Spread of Epidemics

A timely example of the use of first-order differential equations is to the spread of
epidemics, first used by Daniel Bernoulli in 1760 to model the spread of smallpox.
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We will construct a simple model of an epidemic and then solve the resulting
differential equation. This is essentially the way that models in epidemiology
as constructed: assumptions and known characteristics are used to build a model,
which is then solved and various scenarios are tested (e.g. inoculation or isolation)
to develop strategies on how to respond to an epidemic.

Consider model for the spread of a disease in which a population that is di-
vided into two groups: a fraction x that has no disease, but is susceptible to the
disease, and a fraction y that has the disease and can infect others. We suppose
that everyone belongs to only one of these groups, so x + y = 1. We now make
three assumptions about how the disease is spread:

1. The disease spreads only by direct contact between infected and uninfected
individuals. Direct can be taken to mean ‘close proximity,’ as in crowds,
where colds and influenza viruses can easily spread.

2. The fraction of infected individuals increases at a rate α proportional to such
contacts.

3. Both groups move freely among one another, so the number of direct con-
tacts is xy. This is another way of saying that the x and y populations are
uncorrelated.

The differential equation that embodies these assumptions is

dy

dt
= αxy = α(1 − y)y , (3.8)

where α is a constant that specifies the ‘efficiency’ of the spreading at the point
of contact, i.e. the likelihood of disease transmission once direct contact has oc-
curred, and we have used the fact that x + y = 1 to eliminate x in favor of y. In
accordance with our experience in finding the solution for radioactive decay, we
must supplement this equation by specifying the fraction of infected individuals
initially: y(0) = y0.

Equation (3.8) is a first-order nonlinear differential equation. Thus, we cannot
use the trial solution method as formulated above. However, this equation can be
arranged as

dy

y(1 − y)
= α dt ,

so we can use the separation of variables method. Integrating both sides of the
equation with respect to the indicated variables from t = 0, where y = y(0) = y0
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to a later time t , where y = y(t), we obtain

∫ y(t)

y0

dy′

y′(1 − y′)
= α

∫ t

0
dt ′ = α t .

The left-hand side of this equation can be integrated by the method of partial
fractions. We first write

1

y(1 − y)
= A

y
+ B

1 − y
,

which implies that

A(1 − y) + By = 1 .

Choosing y = 0 yields A = 1, and choosing y = 1 yields B = 1, so

1

y(1 − y)
= 1

y
+ 1

1 − y
,

with which we obtain

α t =
∫ y(t)

y0

dy′

y′ +
∫ y(t)

y0

dy′

1 − y′

= ln y′
∣∣∣∣
y(t)

y0

− ln(1 − y′)
∣∣∣∣
y(t)

y0

= ln

[
y(t)

1 − y(t)

1 − y0

y0

]
.

Solving for y(t) yields,

y(t) = y0 eαt

1 − y0(1 − eαt)
. (3.9)

As t → ∞, y(t) → 1, provided that y0 �= 0 (Fig. 3.2). In other words, all of
the population eventually becomes infected unless there is no infection initially.
As long as y0 �= 0, no matter how small, the entire population becomes infected.
Accordingly, the point y = 1 is said to be stable and the point y = 0 is said to be
unstable.



First-Order Differential Equations 43

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

y0 = 1
2

y0 = 10−4

α t

y(
t)

Figure 3.2: The solution in Eq. (3.9) shown as a function of αt for values of y0 in the
range 10−4 ≤ y0 ≤ 1

2 . As y0 decreases toward zero, the solution remains near y = 0
for longer times, while as y0 increases toward unity, the solution approaches y = 1 for
shorter times.

3.4 Nonlinearity and Chaos∗

Most of the methods for solving ordinary and partial differential equations have
been developed for linear equations. This is because of the superposition princi-
ple, which mandates that, given any two solutions y1 and y2 of a linear differential
equation, any linear combination a y1 + b y2, in which a and b are constants, is
also a solution of the same equation. For nonlinear equations, however, linear
superposition cannot be applied to generate new solutions, so general approaches
to finding solutions are far less abundant than for linear equations. A change of
variables can sometimes be found that transforms a nonlinear equation into a lin-
ear equation, or some other ad hoc technique may yield a solution for a particular
equation, but finding the solutions of most nonlinear equations generally requires
new techniques or a resort to numerical integration. Indeed, developing numerical
methods for finding solutions to nonlinear equations is an active research area.

Linear differential equations usually only provide approximations to physical
situations. We saw in Sec. 3.3 how nonlinear equations arise quite naturally even
in the description of a physical situation. In that case, we were still able to obtain
an analytic solution because the nonlinear equation was separable. Any attempt to
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bypass the nonlinearity of this equation would lose the essential character of the
solutions, i.e. epidemiology is an inherently an nonlinear phenomenon.

While nonlinear equations are generally more difficult to solve than linear
equations, their solutions often yield new phenomena that have no linear analogue.
One striking example of this is based on the following set of three coupled first-
order nonlinear ordinary differential equations:

dx

dt
= σ(y − x) ,

dy

dt
= r x − y − xz , (3.10)

dz

dt
= xy − bz ,

in which σ , r , and b are constants. These are called the Lorenz equations, after
Edward Lorenz, a meteorologist who was working on the problem of weather
prediction. His equations are a much reduced form of the equations used in fluid
systems, but he had at his disposal (1963) only a primitive (by today’s standards)
computer. Lorenz discovered several interesting and unexpected properties of the
solutions to his equations.

Figure 3.3 shows solution for x , y, and z for the Lorenz equations with σ = 3,
r = 26.5, and b = 1. Most apparent from this diagram is that the solutions
show quite irregular behavior, with occasional periods of regularity followed by
sudden jumps to another type of regular behavior, but with no apparent pattern.
Because of this behavior, and the extreme sensitivity of the solutions to the initial
conditions, Lorenz had discovered the phenomenon of chaos. The trajectories of
the solutions in Fig. 3.3, which is plotted in the x-y plane in Fig. 3.4, are even more
revealing. The double spiral is typical of the solutions of the Lorenz equations. At
the time of Lorenz’s work, there were only two kinds of order previously known: a
steady state, in which the variables do not change, and periodic behavior, in which
the system goes into a loop, repeating itself indefinitely. Lorenz’s equations were
definitely ordered in that they always followed a spiral. They never settled down
to a single point, but since they never repeated the same thing, they could not be
called periodic either. This is now known as the Lorenz attractor.

An interesting footnote to this discovery is that Lorenz published a paper de-
scribing his findings.1 He included the unpredictability of the weather, and dis-
cussed the types of equations that caused this of behavior. But he published his

1E. N. Lorenz, ‘Deterministic nonperiodic flow,’ J. Atmos. Sci. 20, 130–141 (1963).



First-Order Differential Equations 45

0 20 40 60 80
10

5

0

5

10

t

x(
t)

0 20 40 60 80

10

0

10

20

t

y(
t)

0 20 40 60 80
0

10

20

30

40

t

z(
t)

Figure 3.3: The solutions x , y, and z for the Lorenz equations (3.10) with σ = 3,
r = 26.5, and b = 1.
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Figure 3.4: The solutions of the Lorenz equations in Fig. 3.3 plotted in the x-y plane/

work in a meteorological journal and, as a result, Lorenz’s revolutionary discover-
ies were not acknowledged until years later, by which time they were rediscovered
by others.



Chapter 4

Second-Order Ordinary Differential
Equations

Among the simplest higher-order ordinary differential equations are linear homo-
geneous equations with constant coefficients. The second-order versions of these
equations occur in many applications in science and engineering. Among the most
prevalent of these involve Newton’s second law of motion in mechanics and the
flow of charge in electrical circuits. Such equations also occur as special cases
of certain partial differential equations, for example, in quantum mechanics and
problems of heat conduction. The solutions of second-order differential equations
with constant coefficients will be shown to have the important feature of being
expressible in terms of exponential functions, and their method of solution has
evident extensions to higher-order equations with constant coefficients.

In this chapter, we illustrate the solution of equations with constant coefficients
by focussing on second-order equations. The general form of a second-order lin-
ear homogeneous ordinary differential equation with constant coefficients is

a
d2y

dx2
+ b

dy

dx
+ c y = 0 , (4.1)

where a, b and c are known real constants. The most important property of this
equation is linearity. This means that if we have two solutions y1 and y2, then any
linear combination of y1 and y2 is also a solution of this equation, i.e.

y(x) = Ay1(x) + By2(x)

is a solution for any choice of constants A and B. This is a direct consequence of

47
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the linearity of derivatives, which allows us to write

a
d2y

dx2
+ b

dy

dx
+ cy

= a
d2

dx2
(Ay1 + By2) + b

d

dx
(Ay1 + By2) + c(Ay1 + By2)

= A

(
a

d2y1

dx2
+ b

dy1

dx
+ cy1

)
+ B

(
a

d2y2

dx2
+ b

dy2

dx
+ cy2

)

= 0 . (4.2)

The last equality follows from the fact that y1 and y2 are solutions of (4.1), so the
coefficients of A and B are equal to zero. The same steps can be used to verify this
statement for the more general case of a linear differential equation with variable
coefficients. This is the superposition principle for linear differential equations.
It lies at the heart of both the theory of these equations and the methodologies that
have been developed for solving them.

4.1 The Characteristic Equation

The solution of (4.1) will be obtained by the method of trial solutions. The recur-
sive property of derivatives of the exponential function,

d

dx
(emx) = m emx ,

d2

dx2
(emx) = m2emx , (4.3)

suggests that the trial solution method used for solving first-order equations in
Sec. 3.2.1 can be applied to higher-order equations with constant coefficients.
Suppose we try this for the differential equation (4.1). We substitute our trial so-
lution emx into this equation and choose m by requiring the resulting expression to
equal zero, i.e. that this function solves the equation. Substituting the derivatives
in (4.3) into (4.1) yields

a
d2

dx2
(emx) + b

d

dx
(emx) + c (emx) = (am2 + bm + c) emx . (4.4)

For the function emx to be a solution of (4.1), the coefficient of emx on the right-
hand side of this equation must vanish (since the exponential is nonzero for finite
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x). Thus, m must be chosen to be a root of the quadratic equation

am2 + bm + c = 0 . (4.5)

This is the characteristic equation of the differential equation (4.1) and the left-
hand side of this equation is called the characteristic polynomial. The roots of
the characteristic equation, which are given by the quadratic formula,

m = − b

2a
± 1

2a

√
b2 − 4ac ,

yield solutions of (4.1). This is the power of this trial solution method – the so-
lution of a differential equation has been reduced to finding the roots of quadratic
equation.

By their appearance in the discriminant in this equation, the coefficients a, b
and c are seen to be the central quantities for determining the number and type
of roots of the characteristic polynomial and, through these roots, the behavior of
the exponential solutions. in direct analogy to the discussion in Sec. 1.1, there are
three cases to consider.

4.1.1 Case I: Real Distinct Roots

If b2 − 4ac > 0, there are two distinct real roots of the characteristic equation,
which we denote by m1 and m2. There result two distinct solutions of (4.1):

y1(x) = em1x , y2(x) = em2x . (4.6)

According to the procedure in (4.2), we can use these solutions to form a more
general solution of (4.1) by forming the linear combination

y(x) = Aem1x + Bem2x ,

where A and B are arbitrary constants. This is called the general solution of the
differential equation. The constants A and B are determined by specifying initial
conditions. Because there are two arbitrary constants in the solution, two initial
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conditions are needed to obtain a unique solution. These are taken as the function
y and its derivative at the evaluated at the origin,

y(0) = y0 ,
dy

dx

∣∣∣∣
x=0

≡ y′(0) = y′
0 , (4.7)

although they can be specified at any point. Depending on the signs of m1 and m2,
the solutions exhibit either exponential growth or exponential decay as functions
of x .

4.1.2 Case II: Degenerate Roots

If b2 − 4ac = 0, there is only a single real root, m1 = −b/(2a), of the character-
istic equation. Thus, this method produces only one solution of (4.1):

y1(x) = em1x . (4.8)

We seem to have arrived at an impasse. The case of two real roots of the char-
acteristic equation provided two distinct solutions with which we can obtain a
unique solution from the general solution for a particular set of two initial condi-
tions. A similar situation will arise in the case where the characteristic equation
yields complex conjugate roots. However, if the discriminant vanishes, we appear
to have only a single solution, which cannot be reconciled with two initial condi-
tions. Thus, the method of trial solutions has failed to provide two solutions. But
we can extend this method by making a few simple observations that will yield
a second solution in a form that enables us to deal with the case of a vanishing
discriminant in an analogous manner to the other two cases.

We begin by returning to (4.4), the left-hand side of which is

a
d2(emx)

dx2
+ b

d(emx)

dx
+ c(emx) . (4.9)

This equation equals zero only if we set m = m1, which shows that em1x is a
solution:

[
a

d2(emx)

dx2
+ b

d(emx)

dx
+ c(emx)

]∣∣∣∣
m=m1

= a
d2(em1x)

dx2
+ b

d(em1x)

dx
+ c(em1x) = 0
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Since m is a continuous variable, we can differentiate (4.12) with respect to m
before setting m equal to m1.

{
d

dm

[
a

d2(emx)

dx2
+ b

d(emx)

dx
+ c(emx)

]}∣∣∣∣
m=m1

The order of the derivatives with respect to x and to m is immaterial, so we
can take the m derivatives before the x derivatives, in which case we obtain,

a
d2

dx2

[
d(emx)

dm

]
+ b

d

dx

[
d(emx)

dm

]
+ c

[
d(emx)

dm

]

= a
d2

dx2
(x emx) + b

d

dx
(x emx) + c (x emx) .

The remaining derivatives are straightforward to calculate:

d

dx
(x emx) = emx + mx emx ,

d2

dx2
(x emx) = 2m emx + m2x emx ,

whereupon we obtain

a
d2

dx2

[
d(emx)

dm

]
+ b

d

dx

[
d(emx)

dm

]
+ c

[
d(emx)

dm

]

= (2am + b) emx + (am2 + bm + c)x emx . (4.10)

By setting m = m1 and using the fact that m1 = −b/(2a), we find

2am1 + b = −b + b = 0 ,

am2
1 + bm1 + c = b2

4a
− b2

2a
+ c = −b2 − 4ac

2
= 0 .

so the coefficient of each term on the right-hand side of (4.10) vanishes, leaving

a
d2

dx2
(x em1x) + b

d

dx
(x em1x) + c (x em1x) = 0 ,

which shows that our second solution is, in this case,

y2(x) = x em1x .
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The general solution is

y(x) = (A + Bx)em1x .

Similar to those in (4.6), the solutions y1 and y2 exhibit either exponential growth
or decay, depending on the sign of m1.

4.1.3 Case III: Complex Conjugate Roots

If b2 − 4ac < 0, there are two complex roots, m1 and m2, which are complex
conjugates: m2 = m∗

1 (Problem 8, Classwork 1). The two solutions of (4.1) are
thus given by

y1(x) = em1x , y2(x) = em∗
1x , (4.11)

so the general solution is

y(x) = A em1x + B em2x .

Since m1 and m2 are complex numbers, y1 and y2 are complex-valued functions.
However, we can express the solutions to (4.1) solely in terms of real functions by
utilizing Euler’s formula (1.15). With m1 and m2 expressed in terms of their real
and imaginary parts as

m1 = α + iβ, m2 = α − iβ ,

where α and β are real, we first write the solutions in (4.11) as

y1(x) = e(α+iβ)x = eαx(cos βx + i sin βx) ,

y2(x) = e(α−iβ)x = eαx(cos βx − i sin βx) .

Thus, linear combinations of y1 and y2 can be written as

y(x) = Ay1(x) + By2(x)

= A
[
eαx(cos βx + i sin β)

]
+ B

[
eαx(cos βx − i sin β)

]

= (A + B) eαx cos βx + i(A − B) eαx sin βx .
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Since A and B are arbitrary quantities, then A + B and i(A − B) are as well, so
we can write the general solution in an alternative form based on the real solutions

ỹ1(x) = eαx cos βx ỹ2(x) = eαx sin βx , (4.12)

as

y(x) = C eαx cos βx + D eαx sin βx ,

in which C and D are arbitrary constants whose values are obtained from the
initial conditions (4.7). These solutions show that the imaginary parts of m1 and
m2 produce oscillatory behavior and their real parts, if nonzero, modulate this
with either exponential growth or decay. The choice of whether to use the real
solutions in (4.11) or their complex counterparts in (4.12) is largely a matter of
taste and convenience. In the next section we will show how of the three types of
solution to the characteristic equation arise in a physical setting.

4.2 The Harmonic Oscillator

Consider the harmonic oscillator in

m0

k, r

Figure 4.1: A mass m0 attached to a har-
monic spring with stiffness k and damp-
ing r .

Fig. 4.1, which consists of a mass m0 at-
tached to a spring with stiffness k and
damping γ . Once displaced from equi-
librium, there are two forces acting on
the mass: the gravitational force m0g act-
ing downward, and the forces −kx and
−r ẋ from the spring, which always act
in opposition to the motion (which is the
reason for the minus signs). Newton’s
second law of motion for the position x
of the oscillator is thus given by

m0
d2x

dt2
= −kx − r

dx

dt
− m0g ,

which we rearrange as

d2x

dt2
+ γ

dx

dt
+ ω2

0x + g = 0 ,
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in which

γ = r

m0
, ω2

0 = k

m0
,

and ω0 is the natural frequency of the oscillator. The constant factor g in this
equation, which originates from the force m0g due to gravity in Newton’s second
law, can be eliminated by shifting the position of the oscillator by −m0g/k, which
is the equilibrium position of the oscillator. In other words, this is the solution
obtained with ẋ = 0 and ẍ = 0, where the overdots indicate derivatives with
respect to time. We will not consider the constant term further, so the solution we
will obtain will represent the displacement from this position. The equation to be
solved is

dx2

dt2
+ γ

dx

dt
+ ω2

0x = 0 . (4.13)

To obtain a specific solution for the position of the oscillator, we must supplement
this equation with two initial conditions. We take

x(0) = x0 ,
dx

dt

∣∣∣∣
t=0

= 0 , (4.14)

which correspond to an initial position of x0, but with no initial velocity. Equation
(4.13) has the form of Eq. (4.1), with

a = 1 , b = γ , c = ω2
0 ,

so the solutions are determined by the solving the characteristic equation (4.5), to
obtain the roots

m = 1

2

(
−γ ±

√
γ 2 − 4ω2

0

)
.

The three cases discussed above lead to the types of solution discussed in the next
three sections.

4.2.1 Case I: γ 2 − 4ω2
0 > 0

In this case, we have γ > 2ω0, so the damping dominates the oscillations of the
mass. Hence, this is referred to as the overdamped case. We obtain two real roots
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m1 and m2 given by

m1 = 1

2

(
−γ −

√
γ 2 − 4ω2

0

)
,

m2 = 1

2

(
−γ +

√
γ 2 − 4ω2

0

)
,

so m1 < 0 and m2 < 0, and the general solution is

x(t) = Aem1t + Bem2t .

The initial conditions in Eq. (4.14),

x(0) = A + B = x0 , x ′(0) = m1 A + m2 B = 0 ,

yield

A = −m2x0

m1 − m2
, B = m1x0

m1 − m2
.

The solution for the position of the oscillator is therefore obtained as

x(t) = x0

m1 − m2

(
m1em2t − m2em1t) .

4.2.2 Case II: γ 2 − 4ω2
0 = 0

In this case, we have that γ = 2ω0, so the damping and oscillations are balanced.
This is called the critically damped case. We obtain a single real root m1,

m1 = −1
2γ ,

and the general solution is

x(t) = (A + Bt)e− 1
2 γ t .

The initial conditions in Eq. (4.14),

x(0) = A = x0 , x ′(0) = B − 1
2γ = 0 ,
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yield

A = x0 , B = 1
2 x0γ .

The solution for the position of the oscillator is therefore obtained as

x(t) = x0
(
1 + 1

2γ t
)

e− 1
2 γ t .

4.2.3 Case III: γ 2 − 4ω2
0 < 0

Here, we have that γ < 2ω0. The oscillations dominate the damping, so this is
called the underdamped case. We obtain two roots m1 and m2 that are complex
conjugates, given by

m1 = 1

2

(
−γ − i

√
4ω2

0 − γ 2

)
,

m2 = 1

2

(
−γ + i

√
4ω2

0 − γ 2

)
,

and the general solution is

x(t) = Aem1t + Bem2t .

The initial conditions in Eq. (4.14),

x(0) = A + B = x0 , x ′(0) = m1 A + m2 B = 0 ,

yield

A = −m2x0

m1 − m2
, B = m1x0

m1 − m2
.

The solution for the position of the oscillator is therefore obtained as

x(t) = x0

m1 − m2

(
m1em2t − m2em1t) . (4.15)
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We can write this solution in a more physically transparent form by using the
polar form of m1 and m2. Using the notation

m1 = −1
2γ − i 1

2� , m2 = −1
2γ + i 1

2� ,

the magnitude of both roots is calculated as

(1
4γ 2 + 1

4�2)1/2 = (ω2
0)

1/2 = ω0 .

Thus,

m1 = ω0 eiφ , m2 = ω0 e−iφ ,

where

cos φ = − γ

2ω0
, sin φ = − �

2ω0
.

The solution in (4.15) can now be written as

x(t) = − x0

2i�

[
2ω0 eiφ e− 1

2 (γ−i�)t − 2ω0 e−iφ e− 1
2 (γ+i�)t]

= −x0ω0

i�
e− 1

2 γ t[ei(φ+ 1
2 �t) − e−i(φ+ 1

2 �t)]

= −2x0ω0

�
e− 1

2 γ t sin
(
φ + 1

2�t
)
.

This demonstrates that the solution obtained is, indeed, real, and that the quantity
φ enters as a phase angle into the argument of the periodic part of the solution.

The three types of solutions are shown in Fig. 4.2 for the displacement x(t)
with the initial conditions in (4.14) with x(0) = 1 and x ′(0) = 0. All three
solutions therefore begin at x = 1 with zero initial slope. The overdamped case
decays to zero monotonically, as does the critically damped solution, although the
decay of the latter solution is seen to be much faster. The underdamped solution
shows several periods of oscillation that have a decaying envelope. For all three
cases, the equilibrium position is reached as t → ∞ because of the presence of
the damping.
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Figure 4.2: The three types of solution for a damped harmonic oscillator, showing he
displacement x(t) for the overdamped, critically damped, and underdamped cases.
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4.3 Inhomogeneous Equations

4.3.1 Method of Solution

One of the most striking manifestations of driven systems is the phenomenon of
resonance. This motivates the discussion of equations of the form

a
d2y

dx2
+ b

dy

dx
+ c y = f (x) ,

which are called inhomogeneous because the function f (t) on the right-hand
side of this equation is specified independently of the solution. Such equations
are solved by first supposing that there are two independent solutions y(1)(x) and
y(2)(x) of this equation:

a
d2y(1)

dx2
+ b

dy(1)

dx
+ c y(1) = f (x) , (4.16)

a
d2y(2)

dx2
+ b

dy(2)

dx
+ c y(2) = f (x) . (4.17)

If we subtract one equation from the other, say Eq. (4.16) from (4.17), we obtain

a
d2[y(2) − y(1)]

dt2
+ b

d[y(2) − y(1)]

dt
+ [y(2) − y(1)] = 0 ,

i.e. the difference y(2) − y(1) is a solution of the homogeneous equation! If we
denote the general solution of the homogeneous equation by Ay1(x) + By2(x),
we conclude from the foregoing that

y(2)(x) = Ay1(x) + By2(x) + y(1)(x) .

This suggests the following method of solution. Find a solution yp(x) of the in-
homogeneous equation, called a particular solution, by any means. The general
solution y(x) of the inhomogeneous equation is then given by

y(x) = Ay1(x) + By2(x) + yp(x) ,

in which y1 and y2 are solutions of the corresponding homogeneous equation.
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4.3.2 Resonance in a Driven Harmonic Oscillator

To illustrate the solution of inhomogeneous equations, we consider an undamped
harmonic oscillator driven by an external sinusoidal force:

m0
d2x

dt2
+ kx = F0 cos ωt ,

where m0 is the mass, k is the spring constant, x is the position of the mass, t is
the time, F0 is the amplitude of the driving force with frequency ω. Upon dividing
through by m0, we can write this equation as

d2x

dt2
+ ω2

0x = F0

m0
cos(ωt) , (4.18)

where ω0 = (k/m0)
1/2 is the natural frequency of the oscillator. From the dis-

cussion in the preceding equation, we know that the solution of the corresponding
homogeneous equation (i.e. the equation obtained by setting F0 = 0), is

x(t) = A cos ω0t + B sin ω0t ,

where A and B are arbitrary constants obtained by specifying two initial condi-
tions (the initial position and velocity of the mass). The most general solution of
the inhomogeneous equation is the sum of the general solution of the homoge-
neous and a particular solution x p(t) of the inhomogeneous equation:

x(t) = A cos ω0t + B sin ω0t + x p(t) .

To determine x p(t) for this equation, we attempt a solution of the form

x p(t) = C cos ωt .

The required derivatives are

dx p

dt
= −Cω sin ωt,

d2x p

dt2
= −Cω2 cos ωt .

Substitution of these expressions into Eq. (4.18),

−Cω2 cos ωt + Cω2
0 cos ωt = F0

m0
cos ωt ,

cancelling the common factor of cos(ωt), and solving for C , yields

x p(t) = F0

m0(ω
2
0 − ω2)

cos ωt .
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Note that, as ω → ω0, the solution becomes unbounded. This is called reso-
nance. In the presence of damping, the solutions remain finite, but still become
large when the resonance condition is fulfilled. The damping of oscillations close
to resonance is an important engineering problem, as evidenced by the famous
collapse of the Tacoma Narrows Bridge and, more recently, by the re-design of
the Millennium Bridge to incorporate damping.

The general solution to the inhomogeneous equation (4.18) is therefore given
by

x(t) = A cos ω0t + B sin ω0t + F0

m0(ω
2
0 − ω2)

cos ωt . (4.19)

To solve the initial-value problem, we consider the initial condition corresponding
to the mass being initially at rest:

x(0) = 0,
dx

dt

∣∣∣∣
t=0

= 0 .

Substituting these conditions into the general solution yields

x(0) = A + F0

m0(ω
2
0 − ω2)

= 0 ,

so,

A = − F0

m0(ω
2
0 − ω2)

,

and

dx

dt

∣∣∣∣
t=0

= ω0 B = 0 ,

which yields B = 0. Thus, the solution to the initial-value problem is

x(t) = F0

m0(ω
2
0 − ω2)

(cos ωt − cos ω0t) .

This expression can be written in a physically more transparent form by using the
trigonometric identity,

cos(A − B) − cos(A + B) = 2 sin A sin B .
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By setting A − B = ωt and A + B = ω0t and solving for A and B, we obtain

x(t) = 2F0

m0(ω
2
0 − ω2)

sin
[1

2(ω0 + ω)t
]

sin
[1

2(ω0 − ω)t
]

, (4.20)

which represents the solution as a frequency-dependent amplitude and two sinu-
soidal factors.

Figure 4.3 shows a plot of the quantity X (t) = m0x(t)/2F0 for ω0 = 1 and
ω = 0.9. The solution is shows oscillatory behavior, as expected, but the most
striking feature of this plot is the phenomenon of ‘beats,’ resulting from the super-
position of a high-frequency oscillation, sin[1

2(ω0 + ω)t], and a lower frequency
envelope, sin[1

2(ω0 − ω)t].

4.4 Summary

We can both summarize and generalize the main results of this chapter as follows.
The solution of any nth-order ordinary differential equation depends, in general,
on n arbitrary constants c1, c2, . . . , cn:

y = ϕ(x; c1, c2, . . . , cn) (4.21)

Thus, to obtain a unique solution for a particular problem, it is necessary to sup-
plement the differential equation with auxiliary conditions. A common choice is
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Figure 4.3: The quantity X (t) = m0x(t)/2F0, where x(t) is the solution in (4.20), for
a undamped harmonic oscillator with a natural frequency ω0 = 1 driven by a sinusoidal
force with a frequency ω = 0.9.
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for these constants to be determined from the initial values of the solution y and
its first n − 1 derivatives at some initial point x0:

y(x0) = A0, y′(x0) = A1, . . . y(n)(x0) = An

The expression in (4.21) is a general solution if it possible to satisfy these initial
conditions for arbitrary values of the yi with an appropriate choice of the c j . This
usually requires the solution of a system of algebraic equations.

For homogeneous linear nth-order equations,

an
dn y

dxn
+ · · · + a1

dy

dx
+ a0y = 0

the general solution can be formed from any n linearly independent solutions
y1, y2, . . . , yn of this equation:

y = c1y1 + c2y2 + · · · + cn yn

The determination of the c j from the initial conditions now reduces to the solution
of a system of n linear algebraic equations.


