Fourier

Classwork 1 October 14, 2011

Evaluation of Fourier series

The evaluation of the Fourier coefficients of a periodic function may often be greatly simplified by
exploiting the symmetry of the problem. A few minutes sketching the functions and recognising the
symmetries can save a great deal of unnecessary integration.

The function f(x) plotted below, of repeat length 2L, is used in determining the vibration of a string
plucked at its mid-point (see Differential Equations course). In this Classwork we will determine the
Fourier series representation of the function

f(x) =ag/2 + Z [an, cos(nmz/L) + by sin(nmzx/L)] .

n=1

I I
-L\. -L/2 /0 L/2 L

1. Express the function f(x) as three separate functions, for the intervals —L < z < —L/2,
—L/2<zx<L/2,L/2<xz<L.

2. Write down the full expressions for the terms ag, a,, b, i.e. insert the functions into the Euler-
Fourier formulae:

ap = %I_LL f(x)dx s
anp = %LLL f(x) cos(nmz/L)dx
b, = %f_LL f(z)sin(nmz/L)dx .

3. A brute-force approach is to evaluate the three integrals for each term. More sophisticated is
to note that f(z) is an odd function, so that ap = 0 and a,, = 0. Recognise this visually,
by sketching the relevant functions in the integrals (i.e. f(z) and cos(nma /L)), and observing
(trivially) how parts of the integral cancel with each other, so that the overall integral is zero,
and so ag = 0 and a,, = 0.



4. Itremains to determine the terms b,,. Again by sketching the functions, recognise the following:

e That regardless of the value of n
L L
/ f(z)sin(nrz/L)dx = 2/ f(x)sin(nrz/L)dx .
—L 0
e Thatforn = 2,4,6...

L
/0 f(x)sin(nrz/L)dx =0,

andso b, =0,n = 2,4,6...
e Thatforn =1,3,5...

L L/2
/_L f(z)sin(nrz/L)dx = 4 ; f(z)sin(nmz/L)dx .

5. By these means show that the Fourier representation of f(x) is given by:

flx) = % i ) % sin (71;) sin (T) .
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Differentiation and integration of Fourier series

In some cases it may be simpler to compute a Fourier series by integrating or differentiating a known
Fourier series.

1. Determine the Fourier series

f(x) =ao/2+ > [ancos(nraz/L) + by sin(nmz/L)]
n=1

for the periodic function defined by f(x) = 22 on the interval —L < x < L.

2. Differentiate the series and compare to the Fourier series for f(z) = x over the same interval

flx) = Z —i—i cos(nm) sin(nmrx/L) .
n=1

3. If instead we integrate the Fourier series for f(z) = x, in comparing to the Fourier series for
f(x) = x2, we recognise that the constant of integration is ag/2 i.e. the average value of the
function over the interval. With this in mind, integrate the Fourier series for f(x) = 22, to show
that the Fourier series for f(z) = 22 is given by

00 3 3
flx) = Z (12L 2L ) cos(nm) sin(nmx/L) .
n=1

n3md nw
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Convolution

This classwork uses the notation used in lectures that the inverse FT and the FT are, respectively

e}

fa) = [ glw)e o,

—00

o) = 5 [ fa)e rde.

1. Two rectangular functions f(z), g(x) are defined by

0 —wo<zxr<-—a
flz)=X A —a<z<a
0 a<r<x

0 —oco<ax<—b
glx)=¢ B —-b<zxz<b
0 b<x<@

where a > b. [Note that the g of g(x) has nothing to do with the g of g(w), above. It is just
convenient notation for a second function.]

(a) Without performing any integrations, by considering the nature of convolution (i.e. smear-
ing each element by the convolution function, or kernel) determine and sketch the function
h(z) = f(z) * g(x) which is the convolution of the two functions, labeling all relevant
quantities on the diagram. [Consider a small column of f(x), height A, width dz, and
smear it out by g(x), i.e. spread it over width 2b. Now at each = sum up the contribution
from all dz.]

(b) By appropriate integration, using the expression for convolution
[e.9]
ha) = [ gl = updu.
—0o0
compute expressions for the different parts of 2 (z) and compare to your previous result.

2. Derive an expression for the convolution h(z) = f(x) * g(z) of the two normalised Gaussian

functions f(z) = — 12ﬂe 207 g(z) = Uml/ge_@, by applying the convolution theorem

i.e. by taking their Fourier transforms, multiplying together, and then transforming back. The
inverse FT of a normalised Gaussian function is

f(x) /OO L —sriorgy — o~ 25
T) = e 202¢ r=ce
—00 OV 2T
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Evaluation of Fourier series

1. There are three linear segments:

—2h(L +z)/L (-L<z<-L/2)
f(x) = ¢ 2hz/L (—L/2 <z < L/2)
2h(L —z)/L (L/2<z<1L)

2. Inserting the three functions into the Euler-Fourier formulae gives

G = —Lf} L/2 2h(L+:c)d 41 f%% 2he gy ¢ LfL/2 1'z 2) g |

an = —1[; L/2 2h(L+x) cos(nmx/L)dx + + fLﬁz 22 cos(nma/L)ds
+7 fL/2 L x) cos(nmx/L)dz ,

by = —1 LL/2 Zh(LLH) sin(nrz/L)dx + ¢ f%% 229” sin(nma/L)dz

+1 fLL/2 T) sin(nwz/L)dx .

3. There is no need to evaluate all these integrals. The function f(x) is plotted below, together with
cos(nmxz/L), n = 2 (solid) and n = 3 (dashed). The expression for ag, above, involves simply
integrating the function f(z) over —L < x < L, and is zero, by inspection. The expression
for a,, involves integrating the product of f(z) and each cos term. By reference to the figure,
because f(—z) = —f(x), i.e. f(z) is odd, while cos(nmz/L) is even for every contribution to
the integrals for x > 0 there is an identical negative contribution at —z, which cancels, with the
result that a,, = 0. So all a terms are zero if f(z) is odd.

4. Again, with a little thought, we can avoid doing most of the integrals. The sketch below plots
sin(nwz /L), n = 2 (solid) and n = 3 (dashed). We can see:



that both f(z) and sin(nmz /L) are odd, which means that at every point x the contribution
to the integral is matched by an identical term at the point —z. Therefore, regardless of the
value of n

0 L
/ f(z)sin(nmz/L)dx :/ f(z)sin(nrz/L)dx
L 0
so that
L L
/ f(z)sin(nrz/L)dx = 2/ f(x)sin(nrz/L)dx
-L 0

This statement is always true if f(x) is odd.
that for n = 2,4, 6...

L2 ;
/ f(z)sin(nrz/L)dx = — f(z)sin(nrz/L)dx
0 L2
so that
L
/0 f(z)sin(nrz/L)dx =

and so b, = 0, n = 2,4,6... This statement is always true for an odd function of period
2L, which is also even over the interval 0 < x < L, about z = L/2.

that forn =1, 3,5...
L/2

0

L
f(z)sin(nrz/L)dx = /L/Qf(:n) sin(nma/L)dz

so that
L/2

L
/0 f(z)sin(nmz/L)dr = 2 ; f(x)sin(nrz/L)dx

and
L/2

/ f(x)sin(nmz/L)dx = 4 f(z)sin(nmz/L)dx

This statement is always true for an odd function of period 2L, which is also even over the
interval 0 < = < L, about x = L/2.



5. We need to evaluate the integral

4 rL/2
by, = E/ f(z)sin(nrz/L)dzn =1,3,5...,
0

8h (L2 /nmx
bn:ﬁ/o T sin (L) dr .

Integrating by parts we obtain

LJ2

b _% —:ELCOS (mr:z>+ L2 i (mr:c) _ 8h .
" L2 | nrm L n2m2 m L 0  n2x2

So the required Fourier sin series is
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Differentiation and integration of Fourier series

1. The function f(z) = z? is even, so all b, = 0. Then we determine the a terms.

1 L 1oL, 1 [28]" )
. — — | —or2/3,
ao L/_Lf(ac)d:c L/_Lm dx L[?’]_L /3

1 (L 1 (L 2 L
ap, = —/ f(x) cos(nmz/L)dx = —/ 22 cos(nmx/L)dx = —/ 22 cos(nmx/L)dzx
L/ L)1 L Jo

Integrating successively by parts leads to:

L
2 2L 2L [F 4 b
an =7 ([I sin(mra;/L)] - — msin(mm:/L)dx) = O——/ zsin(nmx/L)dx
0
0

nmw nm Jo nmw
= —— ({_fm cos(mrm/L)]O + E/o cos(mr/L)d:z) ,
AL2
= 53 cos(nm) +0 .
So the Fourier series is
L? X 412
f(z)=a%= 5 + ) cos(nm) cos(nmx/L) .
n=1

2. Differentiating the series and dividing by 2 we obtain

flz)=2x= Z 2k cos(nm) sin(nmwz/l) .

= nm
As expected, this matches the Fourier series for f(x) = x, given in the question.

3. We first integrate the expression for the Fourier series for f(x) = 22, and multiply by 3, which
gives

f(z)=2®= L%+ Z 5 cos(nm)sin(nmz /L) + C

where C' is a constant of integration. The above is not a Fourier series since it contains x. We
can substitute the Fourier series for = to give

00 3 3
f(z) = Z (12L - 2L) cos(nm) sin(nrz/L) + C' .
n=1

n3td  nw

The constant term C' must match ag/2, the average value of the function f(z) = 3. But this is
zero, since x> is odd, leaving the expression in the question.
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1.

Convolution

(a) Within the range —a < x < a, each thin column Adx at x is smeared out over the interval

x — b tox + b, to create a thin flat rectangle of thickness (height) ABdx, centred on
x. [The area of the rectangle is 2ABbdx which is Adzx times the area of g(x).] These
rectangles, centred at the relevant value of x, may be imagined as stacked on top of each
other, resembling a pack of cards that has been sheared over. Then h(x) is the sum of all
the thicknesses of the cards at any x. This imaginary stack is pictured below, LHS. [If this
is not clear, slice f(z) into a specific number of columns, say 10, and stack the smeared
rectangles.] The thickness of the stack increases over the interval —b — a < z < +b — a.
The thickness of the stack at the point z = +b — a is h(z) = 2ABb, and h(x) remains
at this value as far as x = 0. For x > 0, h(x) is the even-function reflection of h(x) for
x < 0. Viewed in this way, we expect h(x) to be the function plotted and labeled below,
RHS.

2ABa

2ABb|/ 2ABb

A a

—b-a +b—a -—-b+a +b+a —b-a +b—a -—-b+a +b+a

(b) While the above reasoning in terms of smearing provides the right answer, a more straight-

forward way is to flip the convolution function g(z) and then slide it along the x axis.
At each point we form the product of f and g (flipped) and integrate. This is what the
formula for h(x) is saying. By drawing f(z) and g(z) we can see that over the range
—b—a < x < +b — a the rectangle g partially overlaps f by the amount z — (—b —
a) = x + b+ a, and since the height of the two functions are A and B, the integral
h(z) = [°0, f(u)g(z — u)du = AB(xz + b+ a). This function is a straight line pass-
ing through =,y = —b — a,0 and reaching a height 2ABb when ©* = +b — a. This is
exactly as expected, and plotted above (RHS). At this point the smaller (g) rectangle lies
entirely within the broader (f) rectangle and then h(x) becomes constant, until z = 0.
From symmetry considerations, the remainder of i (z) is the mirror image over the region



x < 0. This solution therefore agrees with the analysis in the first part. Note that we have
convolved f with g. You might want to try convolving g with f to convince yourself that
convolution is commutative i.e. f *x g = g * f.

2. Writing the Fourier transform as F f(z), then the convolution theorem states that if h(x) =
f(x)*g(x), then Fh(x) = 2nF f(x)Fg(x). Now the FT of a normalised Gaussian of dispersion
2.2

. _o w_
o1s %e 2 . Therefore we find

1 U%wz 1 G§w2 1 (O’%+O‘§)w2
Fh = 29r—e T2 — T2 = —e @ 2
(z) m 27 ° 27 ¢ 27 ¢

This is a Gaussian of dispersion 02 = 1/(0} + 03). It would need to be multiplied by a factor

V2r/o = y/2m(0? 4 02) to be properly normalised. Therefore when we use the provided
formula for the inverse FT, which applies when the Gaussian is normalised, we need to divide
by this factor. This leads to

2
1 [
h(:c) _ Te 2(02402) )
2n(of + 03)

This says that when convolving two normalised Gaussians (centred on 0) the result is a nor-
malised Gaussian where the variances have been added.



