Second Year Quantum Mechanics - Classwork 1 Problems
Probability conservation
Paul Dauncey, 18 Oct 2011

In Lecture 2, we discussed the physical interpretion of the wavefunction ¢ (x,t), namely that
p(x,t) = [1|? = ¥*1) was the probability density at time ¢ for finding the particle at the position
x. Hence the total probability to find the particle anywhere in x is given by

[e.9]

P(t) = / p(x, 1) dz

—0o0
which in general would appear to be a function of ¢. However, this would mean that even if we
fix P =1 at t = 0, then it might become less than one at later times, which implies the particle
might not be found anywhere; this is clearly unphysical. Hence, we need to show that P is in
fact constant and not a function of time; P must be conserved.

1. Using the product rule, calculate dp/0t in terms of derivatives of ¢ and ¢*.

2. For the special case that 1) satisfies the time-independent Schrédinger equation (TISE)
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Rearrange the second of these to give 0v/0t. Take the complex conjugate of both sides
of the resulting expression to also get 9¢*/0t. Substitute these into your expression for
0p/0t and show the latter is zero, which means p is constant with time. This clearly means
P is a constant for this special case; this should not be surprising as it is a stationary state.

3. However, we must show P is constant with time for the general case, when v is not a
stationary state. Here, we only know ) satisfies the time-dependent Schrédinger equation
(TDSE), not the more restrictive time-independent equation, so

azp h? 9%
"ot T Tamanz VY

Again, rearrange to get 0v/0t and take the complex conjugate to find 9v*/dt.
4. Use your expressions for dy/0t and 9v* /0t to express dp/Ot in terms of J, where

-2 [5) - (2)

Hint: Note that J contains only first derivatives of 1 with respect to x.

5. Integrate the resulting equation over all x, noting that the time derivative can be taken
outside of the x integral as it operates on a different variable (see standard relation at end
of page). Assuming ¢ and hence J become zero for large |x|, what does the J term give?

Deduce that P is constant for the general case.
6. Show for plane wave solutions ¢ = Ae *Et=P2)/h then J = vp, where v is the classical
particle velocity. How does this allow us to interpret the physical meaning of the equation

you found in part 47

7. Supplementary: For any complex number z = = + iy, show (z 4 2*)/2 is always purely real
and (z — 2*)/2 is always purely imaginary. What does this tell us about J?

Standard relation: for any function f(z,t), then:

dt(/fd> /<f>dx



Second Year Quantum Mechanics - Classwork 2 Problems
Orthogonality of energy states
Paul Dauncey, 28 Oct 2011

1. As shown in the lectures, the general form for the infinite square well energy states is
nwx nmwx
Uy = Acos — forn=1,3,5,..., Uy = Bsin — for n = 2,4,6,...
2a 2a
Find expressions for the normalisation constants A and B, valid for any n.

2. In Problem Sheet 2, you calculated the probability density function for a state that was
a superposition of the ground state and the first excited state of the infinite square well
potential with walls at x = —a and a. You found it to be a time-dependent function that
“sloshed” from side to side. On the other hand, Classwork 1 and Handout 1 show that
the total probability of finding the particle anywhere in the well remains constant in time,
as the probability density obeys a continuity equation. From Problem Sheet 2, the total
probability is given by the integral
/a 5] dx = 1 {/a cos® 22 da + ’ sin? ™% dz + 2cos(AEt/h) /a cos % sin 7% x| .

—a 2a |J_a 2a _a a —a 2a a

Check the total probability above is correctly normalised and is indeed constant.

3. The fact that this does not change in time was ensured by the third integral vanishing.
That integral is the product of the ground state and first excited state. This being zero
turns out to be an important and general feature of energy states. In general, we find that

o
/ Up Uy, dz =0

for all n # m and the energy states are said to be orthogonal. Show that the ground state
and second excited state of the infinite square well are also orthogonal.

4. As this is supposed to be a general result, it should hold for all energy states. For the
simple harmonic oscillator, check the equivalent integrals both for the ground state (Up)
and first excited state (U;), and also the ground state and the second excited state (Us),
give zero. These states are

Up = Cexp(—az?/2), Uy = Dz exp(—az?/2), Uy = F(2ax? — 1) exp(—az?/2),
where a = mwgy/h and C, D and F are constants.

5. Show generally that the orthogonality of the energy states ensures that the total probability
of finding the particle anywhere remains constant for any general wavefunction which is a
superposition of energy states

s = Z anune_ZE”t/h,
n

where the index n runs over any arbitrary number of integer values.

You may need the following standard relations and integrals:

2

1
cos” o = o (1+ cos2a), sin?

1
a:§(1—0052a), 2cosacos 3 = cos(a + ) + cos(a — ).

2 /7 2 2 L7
- dr =/ — - dre = —/—.
/ exp(—ax”)dx , / x” exp(—az”)dx 2



Second Year Quantum Mechanics - Classwork 3 Problems
Measurements and probabilities
Paul Dauncey, 8 Nov 2011

1. A particle is confined in a one-dimensional infinite square potential with “walls” at x = +a.
The energy of this particle is measured and a result corresponding to the ground state
energy is found.

(a) What is the wave function that describes the particle after this measurement?
(b) What are the possible results of subsequent energy measurements?

(¢) Following the measurement, calculate the total probability of finding the particle in
the region —a/2 < z < a/2.

. At t = 0, just after measuring the particle to have the ground state energy, the walls are
suddenly removed and immediately replaced by walls at x = 4+2a. The wavefunction is
unchanged by the replacement of the walls. By considering the old energy eigenfunctions
and potential, deduce the eigenfunctions applicable to this new situation.

. Following the change to the walls, show that a measurement of the energy will not give an
eigenvalue corresponding to an eigenstate with an even quantum number n.

. Find an expression for the probability that an energy measurement will yield the energy
of an eigenstate with an odd quantum number n. Hence evaluate:

(a) The probability of measuring the energy of the ground state, n = 1.
(b) The probability of measuring the energy of the second excited state, n = 3.

(¢) The sum of probabilities of measuring any energy corresponding to the values n > 3.

. If time permits: You should have found that the probability of measuring any energy
higher than the n = 3 value was small. Hence, an approximation to the particle’s wave
function following the sudden displacement of the walls can be obtained if a superposition
of eigenstates no higher than n = 3 is considered. Write down the probability as a function
of t for finding the particle in the region —a/2 < x < a/2. (You do not need to evaluate
the integrals.) Note that this probability for ¢ > 0 is never higher than the probability of
finding the particle in this range at ¢t = 0. Why?

The following may be useful

Normalised eigenstates for the infinite square well (walls at +a) for integer n > 1

2 cos Acos B = cos(A + B) + cos(A — B), sin(A + B) = sin A cos B + cos Asin B,

|Z1 4+ Zo* = | Z1 > + | Z2|? + 2Re(Z7 Z5); [Z1, Zy are complex; Re = Real Part].



Second Year Quantum Mechanics - Classwork 4 Problems
Expectation values
Paul Dauncey, 18 Nov 2011

A particle is bound in a harmonic oscillator potential

1
V(z) = Qmwgf

where wy is the angular frequency of the corresponding classical oscillator.

1. Show that H can be written in the form

A1 &
where y = x/a and a = /(h/mwp). We can now just use y where we would normally use
2 in the following.

2. The wave function of a particle in this potential is

2
NG

(a) Verify that ¢ (y) is normalized.

1/2
Y(y) = ( ) (1 + iy) exp(—y*/2) .

(b) What is the expectation value of y? and hence of the potential energy V?

(c) Evaluate the expectation value of the kinetic energy, 7.
Hint: Integration by parts gives

()= [ p= [ %]

(d) Use the results of (b) and (c) to calculate the expectation value of (F), where E is
the total energy.

dy

3. The normalized eigenstates of H corresponding to the eigenvalues hwy/2 and 3hw/2 are

uoly) = ( ! )1/2exp(—y2/2)

Nz

2

ui(y) = <\/7»T

(a) Expand the particle wavefunction given in part 2 in terms of energy eigenstates, i.e.

Y(y) = >, apun(y). Hence calculate the probabilities that a measurement of the
energy will give a result equal to hiwg/2 and to 3hwy/2.

Hint: Calculating the overlap integral will always give you a,, but you can sometimes
find the expansion directly by inspection of the wavefunction.

(b) Verify that the value of (E) obtained in part 2(d) is equal to that given by 3, |an|>E.

1/2
) yexp(—y*/2)

Standard integrals:

3y

o0 [ee] T o0
/ exp(—y?) dy = v/, /_ y*exp(—y?) dy = \g /_ y* exp(—y®) dy = |

— 00



Second Year Quantum Mechanics - Classwork 5 Problems
The Uncertainty Principle
Paul Dauncey, 29 Nov 2011

1. The operators corresponding to measurement of position £ and momentum p are
d
T=x p = —ih—.
) p d
Show that & and p satisfy the operator commutation relation
[#,7] = ¥ — pi = ih.
Hint: operate with the commutator on an arbitary function ¢ (z).

2. A particle is in the nth energy eigenstate of an infinite square-well potential with walls at
x = 0,2a. (The normalized eigenfunctions are given at the bottom of this page; note the
walls are not at @ = +a, which was the case in the lectures.)

(a) Show the expectation values of z, z%, p and p* are a, a%(4/3 — 2/n?r?), 0 and
n?h%n? /442, respectively.

(b) Hence show that the Heisenberg uncertainty product is given by:

9 9 1/2
AxAp:Z[n; —2] .

(c) Which state has smallest uncertainty product AxzAp?

3. A form of the uncertainty relation for a pair of operators fl, Bis

AAABE‘<i[A,B}>‘.
2

For the case of A = & and B = p:

(a) Calculate the right hand side of this inequality.

(b) Hence show this uncertainty inequality is valid for all n eigenstates of the infinite
square-well.

(c) Are any of the infinite square well energy eigenstates true “minimum uncertainty”
states?

The following may be useful:

Normalized energy eigenfunctions for the infinite square well with walls at © = 0, 2a are

1
Up () = ——sin <n27;:1:) for all integer n > 1.

Some other standard results

1
(1 —cos2A), sin Acos A = 5 sin2A.

DO | —

1
cos’ A = 5 (1 +cos2A4), sin? A =

2a 2a 2a
. N nwT nmwx
/ sm—dmz/ cos—dx:/ xcos — dx = 0.
0 a 0 a 0 a

20, prx 4a3
x“ cos dr = 5 5
0 a n2mw



Second Year Quantum Mechanics - Classwork 6 Problems
Angular momentum operators
Paul Dauncey, 6 Dec 2011

Angular momentum raising and lowering (“ladder”) operators can be defined in terms of the
operators for the angular momentum components as

Ly =L, +il,.

Generally, these have the effect of converting an angular momentum eigenstate (i.e. a spherical
harmonic) Y},,, into a state proportional to Yj (41, respectively.
In spherical polars, the operators representing the components of angular momentum are

L, = —ih (— sin ¢§0 — cos ¢ cot 9(;1)
- . 0 . 0
L, = —ih ( cos (b% — sin ¢ cot 95@)
A 0
L, = —ih—

m&b

1. The | = 0 spherical harmonic is
1
YOO == E.

(a) Verify that this is an eigenstate of L, and find its eigenvalue.
b) Operate with f/x and L, on this eigenstate and hence find the effect of the operators
y
Ly on Y.

2. The [ = 1 spherical harmonics are

3 /3 ;
Yip = \/7008 0, Y141 = Fy/ — sin fe™®,
4dm 8T

(a) Verify that these are eigenstates of L. and find their eigenvalues.

(b) Operate on Y7o with f)w and I:y and hence verify that i}ino give states proportional
to Y1 41.

(¢) Operate on Y71 with L, and ﬁy. Hence, verify that L_Y7, gives what you would
expect.

(d) What is the result of LyY;1?

3. The results you got in parts 1(b) and 2(d) are particular cases of a general property of the
ladder operators. Explain why you got these results and write down the general expressions
for the two cases.



Second Year Quantum Mechanics - Classwork 7 Problems
Hydrogen atom
Paul Dauncey, 16 Dec 2011

An electron in the Coulomb field of a proton is described by the normalised wavefunction

Y(r) = R(r) x A(0,¢) = ! Lemr/2a0 \/16T7r {\/icosﬁ — sin Be'®

\/24a% ao

where ag is the Bohr radius, ag = 5.3 x 1071 m. The two parts above are the individually
normalised radial (R) and angular (A) contributions to the wavefunction.

1. By considering the angular part of the wavefunction

(a) Express the wavefunction as a sum of angular momentum eigenstates.
(b) Hence give the possible results of a measurement of L? or of L.

(¢) Find the probability that a measurement of L, will yield the result zero.

2. Using the full wavefunction

(a) Assuming the spherical harmonics are orthonormal, check the overall wavefunction is
normalised.

(b) Calculate (r2)/2, the RMS separation of the electron and proton; give your answer
in metres.

(c¢) Give the possible results of a measurement of the energy of the electron.

Useful information:

Some of the spherical harmonics

/3 /3 .
Yi9=1/—cosb, Y111 = F1/ — sin e
47 8

Standard integral
[o¢]
/ e "0y = nla"t
0

The radial parts of the hydrogen atom energy eigenstates go as
Rnl(r) = fnl(r)e—r/nao

where n is the principal quantum number, [ is the angular momentum quantum number which
is required to satisfy [ < n, and f,;(r) is a polynomial of degree n — 1 which is proportional to

r! for small r.

13.6

Hydrogen atom energy eigenvalues: E, = ———-eV
n



Second Year Quantum Mechanics - Classwork 1 Solutions
Probability conservation
Paul Dauncey, 18 Oct 2011

1. The derivative is simply

dp _
ot

oy =2y

2. Rearranging and taking the complex conjugate gives

oY i
o= —ﬁE"L/} and so

oY* i .
ot ﬁEw

since E is real. Substituting into the expression for dp/dt above gives

9p 31/1* ¢

== = LB~ UL B =0

St (O
as required.

3. Rearranging gives

ov __i[ mery
ot h

Taking the complex conjugate of this equation gives

o i [ h? 92*

ot  hl| 2m 0z2

+ Vzﬁ*}

as the potential V is always real.

4. The general expression for dp/0t is

op azp* ¢ i | RB?o%y* . Li | R o%
a - alt” h[‘maxﬁwlwﬁl‘maﬂwl/’

im0 0%
2oz

Noting that J only contains first derivatives while the above expression contains second
derivatives, then consider

e = el (o) () 2
= a5+ () (3)- () () (32)
< anl(5) e (32)

9 __9J
ot Ox

Hence



5. Integrating the left hand side of the above equation gives

> dp d [ dP
I L NS
while the right hand side gives
- % do = — [J]%_ = J(=o00) — J(c0)

If J — 0 for |z| — oo, then the J terms are zero and hence dP/dt = 0, so P is constant.

6. For the plane wave solution i) = Ae~i(Et—p2)/h
oY ip
or hw
Hence
_ ih [(ou”  (OUN] = P [P ey TP ] P
J_Qm[(aa:)w ¥ <8m>}_2m{ h¢¢ hw¢ —mi/Ji/J—UP

This indicates that J is the probability flux of the particles, i.e. the velocity times density.
Hence the equation

dp  9J

ot oz
is a continuity equation saying that the probability density can only change due to a
probability flux, i.e. due to motion of the particles. This is discussed in detail in Handout 1.

7. For z =  + 1y with x and y real, then

z+z2"  rx+iy+r—iy 2w

i
2 2 2
i.e. the real part of z. Similarly
z—z2" rHiwy—z+iy 21y .
= = — = ’Ly

2 2 2

i.e. i times the imaginary part of z and, since y is real, this is purely imaginary.

(5:)e - (5)

where the two terms are clearly complex conjugates of each other. Hence, this is equivalent
to z — z* and so is purely imaginary. Since J is formed by multiplying this by ¢ (and other
real factors), then this makes J purely real, as would be expected for a physical quantity
such as the flux.

The derivatives part of J is




Second Year Quantum Mechanics - Classwork 2 Solutions
Orthogonality of energy states
Paul Dauncey, 28 Oct 2011

1. To normalise the states, we will need to use the relations given

2

1
cos” o = 5 (14 cos2a), sin?

1
a=g (1 — cos2a)
For the infinite square well problem it is only necessary to integrate from —a to a since the
wavefunction is zero outside this range. The normalisation for the cosine states is given
by calculating

a nwT 1 re nwT
/ cos? —dz = f/ 1—|—cosidx
—a 2@ 2 —a a
1 [ a . mm;]a
= - |T+ —sin——- =a
2 nmw a |_q,
since the sine terms are zero, so that we can set A = 1/4/a for all n. For the sine states
a nwT 1 re nmwT
/ sin? ——dz = 7/ 1 —cos—dx
—a 2a 2 /_qa a
1 { a mrx} a
= —|x— —sin—r =a
2 nmw a

so also B = 1/4/a for all n.

. For the total probability, the first two integrals are as above for n = 1 and 2, while the third
integral is an odd function of x and so is zero by inspection. Hence, the total probability
is

a 1
/_ 0ol de = 5 (a+a) =1

and so is normalised and constant, as required.

. If vy and ug are orthogonal then

a
/ ujuz dr =0

—a

The relevant wavefunctions are u; = cos(wz/2a)/v/a and uz = cos(3wz/2a)/+/a.

a 1 1 12a [™/?
— cosx/2a—— cos 3rx/2adx = —— cos 6 cos 360 df
—a Va Vva a7 J oz
1 [7/2
= —/ 2 cosf cos 36 db
T J—7/2

where 0 = mx/2a. Now, using the relation given

2 cos 0 cos 30 = cos 46 + cos 260

w/2 w/2
(/ cos 40d0 + / cos 29d0>
—7/2 —7/2

1 1 w/2
{ sin 46 + — sin 20}
4 2 —7/2

so that

1 [7/2
—/ 2cosfcos30d0 =

™ J—m/2

S A= 3|m



so that the u; and us are indeed orthogonal.

This is a more surprising result than for u; and usy since the integrand is not an odd
function, so it is not so obvious that the relevant integral vanishes.

. The harmonic oscillator ground and first excited state integral is
[e.e] [e.e] oo

/ UyUy dx = / C* exp(—az?/2) Dz exp(—ax? /2) do = C’*D/ zexp(—az?) dr =0
—0o0 — 00 —0o0

since this is again an odd integral.

For the ground and second excited state, then
/_Oo UsUsdx = /_OO C* exp(—ax?/2) F(20x® — 1) exp(—ax?/2) dx
= C'F /jo (2ax? — 1) exp(—az?) dzx
= C'F <2a /:)o 22 exp(—az?) dz — /jo exp(—az?) d:n)
- orfak [T 7)<

. For the general superposition given |1/|? can be written

[s|? = s = (Z a;uzeiEnt/h> (Z amume—iEmt/h>

= Z |an|2|un‘2 + Z a:;u;amumei(En—Em)t/ﬁ
n

n#m
Hence
00 o9 ) o)
/ o2 dz = Z|an|2/ 2 dz+ 3 a;ame“En*Em)t/h/ i
— 00 n — 00 n#m — 00

o0
= Z\an\z/ | |? da
n —00

All terms in the second sum contain ) u,, so when these terms are integrated over all
space, orthogonality ensures that they all vanish, leaving only the first sum, which is
clearly time independent.



Second Year Quantum Mechanics - Classwork 3 Solutions
Measurements and probabilities
Paul Dauncey, 8 Nov 2011
1. (a) Following the measurement, the particle is in eigenstate u; of the potential, and so
the wave function is ¥ (z) = uy(x) = cos(rz/2a)/+/a.

(b) Since 1 (z) is an eigenstate of energy, then subsequent energy measurements yield the
corresponding eigenvalue, i.e. Fqp is the only possible result.

(¢) v¥(z) must be normalized, since u;(x) is normalized, so the probability of |z| < a/2 is

a/2 1 ra/2 a/2
/ [(z)|?de = 7/ cos? Ly = — <cos L 1> dx
—a/2 aJ—q/2 2a 2a J—a)2 a
1 a/2 112 1[2
- {asinm—i-x} {a+a}:{+l}:0.818
2a |7 a —a/2 " 2a 2|7

2. After the walls are shifted suddenly at ¢ = 0, the wave function is
Y(z,t=0) = %COSTQ% : |z| < a
0 : |z| > a

Solutions for the energy eigenstates for the new potential, ' can be obtained simply by
replacing @ — 2a in the solutions for the old potential, i.e.

1 nmwr
dd : ! = —
n o Uy, () Taa cos —
, 1 nne
n even : u, () = —sin——

3. The probability of a measurement giving E, is |c,|?, where ¢, is given by the overlap
integral between the eigenstate u/, and the wavefunction. The integral only needs to go
over x = *a as the wavefunction is zero outside this range. For even n

a
Cn = / ur (x)(x,0) dz a\/2 9 sin m;;c cos g—zdac =0

as this is an odd function. Hence the probability of measuring any eigenvalue corresponding
to an even value of n is zero.

4. For odd n
a a
Cn = /ﬂu’*( x)Y(x,0)dr = ol /_acos m;:n cos%dm
1 a (n+2)rz (n—2)rx
— ey BT g
2ay/2 /_ . {cos 1a -+ cos 1a } T
1 { 4a . (n+2)mx da . (n— 2)7TZL‘} “
= sin + Sin
2a/2 [(n+2)7 4a (n—2)m 4a a
2,/2 [ 1 . (mr n 7r> N 1 . (mr 7r>}
= —— sin [ — + — sin [ — — —
T n+2 4 2 n—2 4 2
Noting
nwom nm nw o, nw
in (28 £ 7)) = sin % cos ~ =+ cos - sin — = + cos
s1n< 1 2) sin 4 Cosg Ecos— sin 5 cos —



then

Cp =

272 1 1 mr] 2/2
— cos = ————
T [n+2 4 n-2 4 (n

_8\/§cos(mr/4)
m(n? —4)

Note, cos(nm/4) = £1/4/2 for odd n.

(a) For n =1, then ¢; = 8/37 so the probability is P; = |¢1|? = (8/3m)? = 0.72.
(b) For n = 3, then c3 = 8/57 so the probability is Py = |c3]? = (8/57)2 = 0.26.

(c) The total probability must be one, so the sum of probabilities for all odd n > 3 must
be 1 —0.72 — 0.26 = 0.02.

. Using the suggested approximation, then the wavefunction is a superposition of only two
eigenstates

P(x,1)

Uy *(x)

Hence we can approximate the wavefunction to
Y(x,t) ~ crui(z) exp(—iEit/h) + csug(x) exp(—iEst/h)

and using the formula given on the question sheet

Prob(|z] < a/2) = /a/j b, )2 da
2

—a

2 ra/2 2 ra/2 3
= |Cl|/ cos27r—x a:—l—C?’/ cos2ﬂd:r

2a J-a/2 4a 2a J-a/2 4qa
a/2 _

+ ace / cos == cos sma dz » cos [(E?’ El)t] .
a J_a)2 4a 4a h

The first two terms are constant. When t = 0, the cos[(E3 — E1)t/h] factor is at its
maximum of one. For any future time, the cosine will be less than or equal to one. Since
c1 and c3 are positive and, from the diagram above, it is clear the third integral will be
positive, then the probability is at its maximum at ¢ = 0. The reason that the probability
of finding the particle within +a/2 is smaller for ¢ > 0 than initially is because the particle
is no longer confined to the original box, but can spread out into the region between +2a.



Second Year Quantum Mechanics - Classwork 4 Solutions
Expectation values
Paul Dauncey, 18 Nov 2011

1. Changing from x to y gives

- —n* d? 1 a2 1 d
H = S da? + QmngQ : Change variables T = ay, prei ﬁd—yQ
-n*1 & 1 , h
= om @ dy? + §mw8a2y2 : substitute: a = P
hwo d? hwo 5 1 d?
= _ _ = 7h
2 42 2 Y T Mo d2+y

2. (a) Checking the normalisation

1/2
U(y) = (3\;) (1 + iy) exp(—y*/2)

/_O;w*wdy = 3\F/ (1+y?) exp(—y?) dy

2 o0
= 3{/ exp(—y?) dy + ﬁ/_ooy%xp(—yz)dy
2 VT2 1,
2

2
3vaVT T3/ 2 373

so 1 is normalized.

(b) The expectation value of y? is given by
%) = /_ Uyt dy = / y2|w|2dy

2 o0
= ENG / y? exp(— dy+ / y* exp(—y?) dy

_ 2f+23f 1+1:
T o3/m 2 37 4 3 2 6
Hence, since from above V = (fiwg/2)y?, then
1 5
(V) = Ehw0<y2> = Ehwo

(¢) For the kinetic energy, since from above T' = —(Fiwg/2) d2/ dyz, then

B hwo / v d21/) _ hwo ’

dy 4y
Since
?; _ (3\%)1/2 [~y exp(—y?/2) — iy exp(—y?/2) + i exp(—y?/2)]
1/2
_ <3\QE> [—yexp(—y2/2)+i(1_yz)eXP(_y2/2)}



then

fl;f - (3\2/7?) [3/2 exp(—y*) + (1 — y2)26Xp(*92)}
_ (3\2/7?) (y' = y* + 1) exp(—y°)
Hence
<dd;> - /O:o (3\2/%> (y* = y* + 1) exp(—y°) dy
2\ [3vVm 7 :
= _<3\/7?) [4—2+ﬁ :_6

The total energy is the sum of the kinetic and potential energies so

(B) = (T) + (V) = 2hag

The wavefunction is

2
N

We want ¢ = >, anuy; by inspection

” \/§ +i
=1/-u —u
303!

1/2
w(y>=( ) (1+ iy) exp(—y*/2)

SO
2 1
ap = \/;7 ap = %
Hence
2 2 2 1
P(Eo) =laol" =3,  PE1)=|al" =5

and so Y, |a,|? = 1 as required. The same result could be obtained by doing the

overlap integrals

A direct calculation of (E) using the above probabilities gives

(E) = Z’an|2En
2 1 hwo hwo 5th
R e T 6

Therefore, the calculation of the expectation value using the operator integral gives

the same result as using the statistical weighted average.
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1. Consider [z, p] acting

2, Y

Hence [z, p| = ih.

2.
dard integrals as

The Uncertainty Principle
Paul Dauncey, 29 Nov 2011

on a state ¢ (x):

d
= (#p-piyy =2 (— )wﬂﬁ (z)
— _m’hﬂ + z‘hxd—w + ihp = iha)
dx dx

(a) Terms in {} brackets in the following calculation have been substituted using the stan-

glven.

1
The particle is described by ¢ (z) = — sin mrx’ SO
Va 2a
00 1 2a
(x) = Y de = f/ wsin? L gy
—00 a Jo 2a
1 2 1 [22]* 1 2 oan
= —/ w[l—cos]d:):— — ——/ T cos — dx
2a Jo a 2a | 2 0 2a Jo a
1 4a 1
= =
5 5,10t =a
as expected by the symmetry of the potential. Also
00 1 2a
(%) = / w*xQdex:f/ 22sin? 7 gy
—00 a Jo 2a
1 2a
= —/ 2{1—00571} dx
2a Jo a
1 [23]% 1 /2a 2 cos VT 4
= — |—= - — r“cos — dr
2a | 3 0 2a Jo a
_ 18¢ 1 faed)_de? 2
 2a 3 2a | n272 [ 3 n2m?
For momentum
0 *< ) d) —ih (2 nrx (nﬂ') nTT
= —ih— de = — — [ — —d
2 /_oow ! dx ydz a Jo . 2a \ 2a o8 2a v

—ihnm

—ihnm
dx = 102 {0} =0

4a?

™

2a n
S1n
0

a

as expected for a bound state. Finally

o d? —h? nwe n2n? nwT
2 . .
= R dr = — — d
(p*) /_Oow (( 7 ) 72 >1/) i 0 ) sin 5a ( 12 sin 5 T
n*n2n? (20, nra h?n2n? [2a nmw
= 103 /0 sin oa T = e /0 1 — cos —a dx
H2n2,2 . B2n22



(b) The mean square values are

402 242 1 2
2 2\ 2 o o 2: P
(Az)® = (27) — (x)° = R a a {3 n27.r2:| :
h2n2n2
2 _ 2\ (N2
(Ap)® = (p°) — (p) 102

Hence

W2n2r2 11 2 K2 [ n2x2
(Az)*(Ap)* = 1 [3 - 71271'2] = — [ - 2]

9 9 1/2
AzAp = Z[n; —2]

(c) When n = 1, this is \/(7%/3 — 2)(h/2) = 1.14(h/2) and so is real, i.e. the first term
in the square root is larger than the second. Clearly, for bigger n, this will remain
true and so for n > 1, the uncertainty product will always be larger than for n = 1.
Hence the ground state has the smallest value of the uncertainty product.

3. The given uncertainty relation for A=jand B= P is
sedp = |(510.9))

(a) Using the commutator, the expectation value on the RHS for any normalized wave-

function is ) -
()= ()=t [ o=

so the right hand side of the uncertainty relation is | — h/2| = h/2.

(b) As shown in question 2(c), AxzAp = 1.14(h/2) for n = 1 and is larger for n > 1.
Hence AzxzAp > h/2 for all n and so the inequality is always valid.

(¢) The ground state (n = 1) has the smallest uncertainty product but it is not a true
minimum uncertainty state since it has AzAp > h/2, rather than AzAp = h/2.
Only a Gaussian function (e.g. the ground state of the SHO) is a true minimum
uncertainty state.
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(a)

()

Angular momentum operators
Paul Dauncey, 6 Dec 2011

Yoo is not a function of § or ¢. Hence, taking a derivative of ¢ will give zero, so
L:Yp0=0=0x Yoo

Hence, Yy is an eigenstate of ﬁz with eigenvalue 0.

Similarly, a derivative of 6 on Yy gives zero so
ﬁx%OZOa ﬁy%OZO

Hence )
LiYp0=0

Y10 is not a function of ¢ so operating with L, gives

L.Yi0=0=0xYig

L.Yi4 = :I:z'h\/;_sinﬂaagb(eiw) +ihy/ 71_sm@(:tzei“ls)
/3 . i
= —h g, S0 0er® = (£h)Y1 11

Hence, all three of the [ = 1 spherical harmonics are eigenstates of i}Z, with eigenvalues
of 0 and =+h, respectively.

while

Operating with L, and fly on Yig gives

L Ylo—zh\/ 5 Slﬂ(b (cos@)——zh\/ 3 sin ¢ sin 6
47

R . [3 0 . /3 .
L,Yi9 = —ih py cos ¢%(COS 0) =ih e cos ¢sin 0
Hence

LiYio = L YloztzL Ylo——zh\/ 5 smqbsm9¥h\/ 5 cosqﬁsm@

= $h\/ 3 sm«9(cos¢:l:zsm¢) ¢\fh\/ Sln96i1¢:\/§hY1:|:1

and

Hence, Ly changes Y7 into states proportional to Y] 11, as expected.

Operating with L, and IA/y on Y71 gives

L,Y1, = ihy 3 (— sin ¢ cos Be'® — i cos ¢ cot @ sin Geid’)
8T

, A o A
= Ny 8% cos 0e'®(—isin ¢ 4 cos ¢) = ﬁ” % cos fe'Pe™0 = EYIO



and
2 . 3 i .. . i
LyYi1 = i/ — (cosécos@e — g sin ¢ cot 0 sin fe )
81

, i o 10
= ihy/ 8% cos fe'®(cos ¢ — isin ) = %\/ % cos Peie™ ¢ = Z—\/ing

Hence 5 " 5 5
A 1
L Vii=—Yi9—i—Yi0= —Yi0+ —Yi0 = V2hY;
11 \/5 10 \/§ 10 \@ 10 \/Q 10 10

i.e. it is proportional to Y7, as expected.

(d) Operating with Ly gives

N h _1h h h
LYy, = EYIO —HﬁYw = \ﬁylo G

Yio=0

3. For part 1(b) when [ = 0, the only allowed value is m; = 0 so the ladder operators should
not be able to create a state with any higher or lower values of my. Specifically, we should
have L1Yyg =0 and L_Yyg = 0, as was found.

For part 2(d) when [ = 1, then the highest allowed value is m; = 1 so we cannot raise this
further, and so we expect L;Y71 = 0, again as found. (We would also find L_Y; _; =0 if
we had calculated that.)

Generally, the highest and lowest values are m; = £l so we should always find ﬁ+lfll =0
and L_Y; ; =0 for any value of [.
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Hydrogen atom
Paul Dauncey, 16 Dec 2011

1. Angular momentum eigenstates are the spherical harmonics Y;,, (6, ¢). They can be mul-
tiplied by any function of r.

(a) The given wavefunction can be expanded in terms of the spherical harmonics by

inspection. Noting
Y19 x cosf, Y71 o sin Oc'®

then putting

3 )
\/;{\/icosﬁ—sinee“ﬂ - Zallelmz:aloylo-l-auYu

Ly

3 3 )
= alowﬂcosﬁ — alm/gsin&iw

3 3 1
I NG _ =
10\ 17 =V 165 V2 “o="
3 3 1

ari\/ o= =\ 1o a1 = —=
8 167 V2

Note >, lai m|?> = 1 which checks the angular part of the wavefunction is indeed
normalised. Hence, the angular part is

\/16% {ﬂcosG—sin@eiﬂ 7(Y10+Y11)

The wavefunction decomposition includes

gives

Yi0: eigenvalue of L? is 1(I + 1)712 = 92h2
eigenvalue of L, is mih = 0
Y11: eigenvalue of L? is (I + 1)/"12 = 92h2
eigenvalue of L, is mh = h

Hence, the only possible result of a measurement of L? is 2h%. The two possible
results of a measurement of L, are 0 or h.

Since a1¢ = 1/v/2, the probability of measuring L, = 0 is |a10|?> = 1/2.
Writing ¢ (r) as

(r) = R(r)j§

then the normalisation is checked by calculating

///W\Qd?’r - /%/ / |2 72 dr sin 6 d6 do

= / |R(r) |2T2d7"/ /2|Y10+Y11\2sm9d0d¢
0

Y10+ Y1)

1



Assuming that the spherical harmonics are orthonormal, then the second integral
gives

27 T 1 . 1 27 T . . )
/0 /()§\Y10+Y11|2s1n0d9d¢ _ 5/O /0(]Y10|2+Y10Y11+Y11Y10+\Y11]2)s1n0d0d¢

1 2w 2r 7
= U /\Y10]2sin9dc9d¢>+/ /|Y11\251n0d9d¢
2 Jo Jo o Jo

1
= -|1+1]=1
S1+1]

The radial part is

Lo o T[>, 1
[T dr — / temr/0 dr = 4163) =1
24a8/0 a%e e 24a? Jo he " 24a? (4lag)

so the total wavefunction is indeed normalised.

For the mean square radius, the angular part again integrates to unity, so

e
(rt) = / 2 emr/ao 2 gy
0

3 2
24aj ah

- /OO rSe=/a0 dp — ! (6laf) = 30a3
24@8 0 24@8

Hence, the RMS separation is v/30ag = 5.5a¢ = 2.7 x 10710m.

Comparing the radial part of the wavefunction

R(r) o< re~"/2a0
with the expectation for an energy eigenstate, then since the eigenstates go as e~"/"90,
then the exponent implies this wavefunction only contains eigenstates with n = 2.
The r factor is a polynomial of degree 1 which is consistent with n = 2. Also, it
clearly goes as 7! for small 7, which implies I = 1 (which is also consistent with
[ < n =2 and the spherical harmonics considered in part 1). Hence, the radial part
is consistent with a single eigenstate, Ro;(r). Therefore, we conclude

1 1
= Ry X E(Ym +Y11) = \ﬁ(umo +u211)
Hence, the only possible energy measurement outcome corresponds to n = 2, which
gives an energy

B, — _13.62eV s 4ev
n



