
Second Year Quantum Mechanics - Classwork 1 Problems
Probability conservation

Paul Dauncey, 18 Oct 2011

In Lecture 2, we discussed the physical interpretion of the wavefunction ψ(x, t), namely that
ρ(x, t) = |ψ|2 = ψ∗ψ was the probability density at time t for finding the particle at the position
x. Hence the total probability to find the particle anywhere in x is given by

P (t) =
∫ ∞

−∞
ρ(x, t) dx

which in general would appear to be a function of t. However, this would mean that even if we
fix P = 1 at t = 0, then it might become less than one at later times, which implies the particle
might not be found anywhere; this is clearly unphysical. Hence, we need to show that P is in
fact constant and not a function of time; P must be conserved.

1. Using the product rule, calculate ∂ρ/∂t in terms of derivatives of ψ and ψ∗.

2. For the special case that ψ satisfies the time-independent Schrödinger equation (TISE)

− h̄2

2m
∂2ψ

∂x2
+ V ψ = Eψ so ih̄

∂ψ

∂t
= Eψ

Rearrange the second of these to give ∂ψ/∂t. Take the complex conjugate of both sides
of the resulting expression to also get ∂ψ∗/∂t. Substitute these into your expression for
∂ρ/∂t and show the latter is zero, which means ρ is constant with time. This clearly means
P is a constant for this special case; this should not be surprising as it is a stationary state.

3. However, we must show P is constant with time for the general case, when ψ is not a
stationary state. Here, we only know ψ satisfies the time-dependent Schrödinger equation
(TDSE), not the more restrictive time-independent equation, so

ih̄
∂ψ

∂t
= − h̄2

2m
∂2ψ

∂x2
+ V ψ

Again, rearrange to get ∂ψ/∂t and take the complex conjugate to find ∂ψ∗/∂t.

4. Use your expressions for ∂ψ/∂t and ∂ψ∗/∂t to express ∂ρ/∂t in terms of J , where

J =
ih̄

2m

[(
∂ψ∗

∂x

)
ψ − ψ∗

(
∂ψ

∂x

)]
Hint: Note that J contains only first derivatives of ψ with respect to x.

5. Integrate the resulting equation over all x, noting that the time derivative can be taken
outside of the x integral as it operates on a different variable (see standard relation at end
of page). Assuming ψ and hence J become zero for large |x|, what does the J term give?
Deduce that P is constant for the general case.

6. Show for plane wave solutions ψ = Ae−i(Et−px)/h̄, then J = vρ, where v is the classical
particle velocity. How does this allow us to interpret the physical meaning of the equation
you found in part 4?

7. Supplementary: For any complex number z = x+ iy, show (z+ z∗)/2 is always purely real
and (z − z∗)/2 is always purely imaginary. What does this tell us about J?

Standard relation: for any function f(x, t), then:

d

dt

(∫
f dx

)
=

∫ (
∂f

∂t

)
dx
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Second Year Quantum Mechanics - Classwork 2 Problems

Orthogonality of energy states

Paul Dauncey, 28 Oct 2011

1. As shown in the lectures, the general form for the infinite square well energy states is

un = A cos
nπx

2a
for n = 1, 3, 5, . . . , un = B sin

nπx

2a
for n = 2, 4, 6, . . .

Find expressions for the normalisation constants A and B, valid for any n.

2. In Problem Sheet 2, you calculated the probability density function for a state that was
a superposition of the ground state and the first excited state of the infinite square well
potential with walls at x = −a and a. You found it to be a time-dependent function that
“sloshed” from side to side. On the other hand, Classwork 1 and Handout 1 show that
the total probability of finding the particle anywhere in the well remains constant in time,
as the probability density obeys a continuity equation. From Problem Sheet 2, the total
probability is given by the integral∫ a

−a
|ψs|2 dx =

1
2a

[∫ a

−a
cos2

πx

2a
dx+

∫ a

−a
sin2 πx

a
dx+ 2 cos(∆Et/h̄)

∫ a

−a
cos

πx

2a
sin

πx

a
dx

]
.

Check the total probability above is correctly normalised and is indeed constant.

3. The fact that this does not change in time was ensured by the third integral vanishing.
That integral is the product of the ground state and first excited state. This being zero
turns out to be an important and general feature of energy states. In general, we find that∫ ∞

−∞
u∗num dx = 0

for all n 6= m and the energy states are said to be orthogonal. Show that the ground state
and second excited state of the infinite square well are also orthogonal.

4. As this is supposed to be a general result, it should hold for all energy states. For the
simple harmonic oscillator, check the equivalent integrals both for the ground state (U0)
and first excited state (U1), and also the ground state and the second excited state (U2),
give zero. These states are

U0 = C exp(−αx2/2), U1 = Dx exp(−αx2/2), U2 = F (2αx2 − 1) exp(−αx2/2),

where α = mω0/h̄ and C, D and F are constants.

5. Show generally that the orthogonality of the energy states ensures that the total probability
of finding the particle anywhere remains constant for any general wavefunction which is a
superposition of energy states

ψs =
∑
n

anune
−iEnt/h̄,

where the index n runs over any arbitrary number of integer values.

You may need the following standard relations and integrals:

cos2 α =
1
2

(1 + cos 2α) , sin2 α =
1
2

(1 − cos 2α) , 2 cosα cosβ = cos(α+ β) + cos(α− β).

∫ ∞

−∞
exp(−αx2)dx =

√
π

α
,

∫ ∞

−∞
x2 exp(−αx2)dx =

1
2α

√
π

α
.
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Second Year Quantum Mechanics - Classwork 3 Problems

Measurements and probabilities

Paul Dauncey, 8 Nov 2011

1. A particle is confined in a one-dimensional infinite square potential with “walls” at x = ±a.
The energy of this particle is measured and a result corresponding to the ground state
energy is found.

(a) What is the wave function that describes the particle after this measurement?

(b) What are the possible results of subsequent energy measurements?

(c) Following the measurement, calculate the total probability of finding the particle in
the region −a/2 < x < a/2.

2. At t = 0, just after measuring the particle to have the ground state energy, the walls are
suddenly removed and immediately replaced by walls at x = ±2a. The wavefunction is
unchanged by the replacement of the walls. By considering the old energy eigenfunctions
and potential, deduce the eigenfunctions applicable to this new situation.

3. Following the change to the walls, show that a measurement of the energy will not give an
eigenvalue corresponding to an eigenstate with an even quantum number n.

4. Find an expression for the probability that an energy measurement will yield the energy
of an eigenstate with an odd quantum number n. Hence evaluate:

(a) The probability of measuring the energy of the ground state, n = 1.

(b) The probability of measuring the energy of the second excited state, n = 3.

(c) The sum of probabilities of measuring any energy corresponding to the values n > 3.

5. If time permits: You should have found that the probability of measuring any energy
higher than the n = 3 value was small. Hence, an approximation to the particle’s wave
function following the sudden displacement of the walls can be obtained if a superposition
of eigenstates no higher than n = 3 is considered. Write down the probability as a function
of t for finding the particle in the region −a/2 < x < a/2. (You do not need to evaluate
the integrals.) Note that this probability for t > 0 is never higher than the probability of
finding the particle in this range at t = 0. Why?

The following may be useful

Normalised eigenstates for the infinite square well (walls at ±a) for integer n ≥ 1

un(x) =
1√
a

cos
nπx

2a
[n odd] un(x) =

1√
a

sin
nπx

2a
[n even],

2 cos A cos B = cos(A + B) + cos(A−B), sin(A±B) = sin A cos B ± cos A sinB,

|Z1 + Z2|2 = |Z1|2 + |Z2|2 + 2Re(Z∗
1Z2); [Z1, Z2 are complex; Re ≡ Real Part].

1



Second Year Quantum Mechanics - Classwork 4 Problems

Expectation values

Paul Dauncey, 18 Nov 2011

A particle is bound in a harmonic oscillator potential

V (x) =
1
2
mω2

0x
2

where ω0 is the angular frequency of the corresponding classical oscillator.

1. Show that Ĥ can be written in the form

Ĥ =
1
2
h̄ω0

(
− d2

dy2
+ y2

)

where y = x/a and a =
√

(h̄/mω0). We can now just use y where we would normally use
x in the following.

2. The wave function of a particle in this potential is

ψ(y) =
(

2
3
√
π

)1/2

(1 + iy) exp(−y2/2) .

(a) Verify that ψ(y) is normalized.

(b) What is the expectation value of y2 and hence of the potential energy V ?

(c) Evaluate the expectation value of the kinetic energy, T .
Hint: Integration by parts gives〈

d2

dy2

〉
=
∫ ∞
−∞

ψ∗
d2ψ

dy2
dy = −

∫ ∞
−∞

∣∣∣∣dψdy
∣∣∣∣2 dy

(d) Use the results of (b) and (c) to calculate the expectation value of 〈E〉, where E is
the total energy.

3. The normalized eigenstates of Ĥ corresponding to the eigenvalues h̄ω0/2 and 3h̄ω0/2 are

u0(y) =
(

1√
π

)1/2

exp(−y2/2)

u1(y) =
(

2√
π

)1/2

y exp(−y2/2)

(a) Expand the particle wavefunction given in part 2 in terms of energy eigenstates, i.e.
ψ(y) =

∑
n anun(y). Hence calculate the probabilities that a measurement of the

energy will give a result equal to h̄ω0/2 and to 3h̄ω0/2.
Hint: Calculating the overlap integral will always give you an, but you can sometimes
find the expansion directly by inspection of the wavefunction.

(b) Verify that the value of 〈E〉 obtained in part 2(d) is equal to that given by
∑

n |an|2En.

Standard integrals:∫ ∞
−∞

exp(−y2) dy =
√
π,

∫ ∞
−∞

y2 exp(−y2) dy =
√
π

2
,

∫ ∞
−∞

y4 exp(−y2) dy =
3
√
π

4
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Second Year Quantum Mechanics - Classwork 5 Problems

The Uncertainty Principle

Paul Dauncey, 29 Nov 2011

1. The operators corresponding to measurement of position x̂ and momentum p̂ are

x̂ = x, p̂ = −ih̄ d
dx
.

Show that x̂ and p̂ satisfy the operator commutation relation

[x̂, p̂] = x̂p̂− p̂x̂ = ih̄.

Hint: operate with the commutator on an arbitary function ψ(x).

2. A particle is in the nth energy eigenstate of an infinite square-well potential with walls at
x = 0, 2a. (The normalized eigenfunctions are given at the bottom of this page; note the
walls are not at x = ±a, which was the case in the lectures.)

(a) Show the expectation values of x, x2, p and p2 are a, a2(4/3 − 2/n2π2), 0 and
n2h̄2π2/4a2, respectively.

(b) Hence show that the Heisenberg uncertainty product is given by:

∆x∆p =
h̄

2

[
n2π2

3
− 2

]1/2

.

(c) Which state has smallest uncertainty product ∆x∆p?

3. A form of the uncertainty relation for a pair of operators Â, B̂ is

∆A∆B ≥
∣∣∣∣〈 i2

[
Â, B̂

]〉∣∣∣∣ .
For the case of Â = x̂ and B̂ = p̂:

(a) Calculate the right hand side of this inequality.
(b) Hence show this uncertainty inequality is valid for all n eigenstates of the infinite

square-well.
(c) Are any of the infinite square well energy eigenstates true “minimum uncertainty”

states?

The following may be useful:

Normalized energy eigenfunctions for the infinite square well with walls at x = 0, 2a are

un(x) =
1√
a

sin
(
nπx

2a

)
for all integer n ≥ 1.

Some other standard results

cos2A =
1
2

(1 + cos 2A) , sin2A =
1
2

(1− cos 2A) , sinA cosA =
1
2

sin 2A.

∫ 2a

0
sin

nπx

a
dx =

∫ 2a

0
cos

nπx

a
dx =

∫ 2a

0
x cos

nπx

a
dx = 0.

∫ 2a

0
x2 cos

nπx

a
dx =

4a3

n2π2
.
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Second Year Quantum Mechanics - Classwork 6 Problems

Angular momentum operators

Paul Dauncey, 6 Dec 2011

Angular momentum raising and lowering (“ladder”) operators can be defined in terms of the
operators for the angular momentum components as

L̂± = L̂x ± iL̂y.

Generally, these have the effect of converting an angular momentum eigenstate (i.e. a spherical
harmonic) Yl ml

into a state proportional to Yl (ml±1), respectively.
In spherical polars, the operators representing the components of angular momentum are

L̂x = −ih̄

(
− sinφ

∂

∂θ
− cos φ cot θ

∂

∂φ

)
L̂y = −ih̄

(
cos φ

∂

∂θ
− sinφ cot θ

∂

∂φ

)
L̂z = −ih̄

∂

∂φ

1. The l = 0 spherical harmonic is

Y0 0 =
√

1
4π

.

(a) Verify that this is an eigenstate of L̂z and find its eigenvalue.

(b) Operate with L̂x and L̂y on this eigenstate and hence find the effect of the operators
L̂± on Y0 0.

2. The l = 1 spherical harmonics are

Y1 0 =
√

3
4π

cos θ, Y1±1 = ∓
√

3
8π

sin θe±iφ.

(a) Verify that these are eigenstates of L̂z and find their eigenvalues.

(b) Operate on Y1 0 with L̂x and L̂y and hence verify that L̂±Y1 0 give states proportional
to Y1±1.

(c) Operate on Y1 1 with L̂x and L̂y. Hence, verify that L̂−Y1 1 gives what you would
expect.

(d) What is the result of L̂+Y1 1?

3. The results you got in parts 1(b) and 2(d) are particular cases of a general property of the
ladder operators. Explain why you got these results and write down the general expressions
for the two cases.

1



Second Year Quantum Mechanics - Classwork 7 Problems

Hydrogen atom

Paul Dauncey, 16 Dec 2011

An electron in the Coulomb field of a proton is described by the normalised wavefunction

ψ(r) = R(r)×A(θ, φ) =
1√
24a3

0

r

a0
e−r/2a0 ×

√
3

16π

[√
2 cos θ − sin θeiφ

]

where a0 is the Bohr radius, a0 = 5.3 × 10−11 m. The two parts above are the individually
normalised radial (R) and angular (A) contributions to the wavefunction.

1. By considering the angular part of the wavefunction

(a) Express the wavefunction as a sum of angular momentum eigenstates.

(b) Hence give the possible results of a measurement of L2 or of Lz.

(c) Find the probability that a measurement of Lz will yield the result zero.

2. Using the full wavefunction

(a) Assuming the spherical harmonics are orthonormal, check the overall wavefunction is
normalised.

(b) Calculate 〈r2〉1/2, the RMS separation of the electron and proton; give your answer
in metres.

(c) Give the possible results of a measurement of the energy of the electron.

Useful information:

Some of the spherical harmonics

Y1 0 =
√

3
4π

cos θ, Y1±1 = ∓
√

3
8π

sin θe±iφ

Standard integral ∫ ∞

0
rne−r/adr = n! an+1

The radial parts of the hydrogen atom energy eigenstates go as

Rnl(r) = fnl(r)e−r/na0

where n is the principal quantum number, l is the angular momentum quantum number which
is required to satisfy l < n, and fnl(r) is a polynomial of degree n− 1 which is proportional to
rl for small r.

Hydrogen atom energy eigenvalues: En = −13.6
n2

eV

1



Second Year Quantum Mechanics - Classwork 1 Solutions

Probability conservation

Paul Dauncey, 18 Oct 2011

1. The derivative is simply

∂ρ

∂t
=

∂

∂t
(ψ∗ψ) =

∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t

2. Rearranging and taking the complex conjugate gives

∂ψ

∂t
= − i

h̄
Eψ and so

∂ψ∗

∂t
=
i

h̄
Eψ∗

since E is real. Substituting into the expression for ∂ρ/∂t above gives

∂ρ

∂t
=
∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t
=
i

h̄
Eψ∗ψ − ψ∗ i

h̄
Eψ = 0

as required.

3. Rearranging gives
∂ψ

∂t
= − i

h̄

[
− h̄2

2m
∂2ψ

∂x2
+ V ψ

]
Taking the complex conjugate of this equation gives

∂ψ∗

∂t
=
i

h̄

[
− h̄2

2m
∂2ψ∗

∂x2
+ V ψ∗

]

as the potential V is always real.

4. The general expression for ∂ρ/∂t is

∂ρ

∂t
=

∂ψ∗

∂t
ψ + ψ∗

∂ψ

∂t
=
i

h̄

[
− h̄2

2m
∂2ψ∗

∂x2
+ V ψ∗

]
ψ − ψ∗ i

h̄

[
− h̄2

2m
∂2ψ

∂x2
+ V ψ

]

=
ih̄

2m

[
ψ∗
(
∂2ψ

∂x2

)
−
(
∂2ψ∗

∂x2

)
ψ

]

Noting that J only contains first derivatives while the above expression contains second
derivatives, then consider

∂J

∂x
=

ih̄

2m
∂

∂x

[(
∂ψ∗

∂x

)
ψ − ψ∗

(
∂ψ

∂x

)]
=

ih̄

2m

[(
∂2ψ∗

∂x2

)
ψ +

(
∂ψ∗

∂x

)(
∂ψ

∂x

)
−
(
∂ψ∗

∂x

)(
∂ψ

∂x

)
− ψ∗

(
∂2ψ

∂x2

)]

=
ih̄

2m

[(
∂2ψ∗

∂x2

)
ψ − ψ∗

(
∂2ψ

∂x2

)]

Hence

∂ρ

∂t
= −∂J

∂x

1



5. Integrating the left hand side of the above equation gives∫ ∞
−∞

∂ρ

∂t
dx =

d

dt

∫ ∞
−∞

ρ dx =
dP

dt

while the right hand side gives

−
∫ ∞
−∞

∂J

∂x
dx = − [J ]∞−∞ = J(−∞)− J(∞)

If J → 0 for |x| → ∞, then the J terms are zero and hence dP/dt = 0, so P is constant.

6. For the plane wave solution ψ = Ae−i(Et−px)/h̄

∂ψ

∂x
=
ip

h̄
ψ

Hence

J =
ih̄

2m

[(
∂ψ∗

∂x

)
ψ − ψ∗

(
∂ψ

∂x

)]
=

ih̄

2m

[
− ip
h̄
ψ∗ψ − ip

h̄
ψ∗ψ

]
=

p

m
ψ∗ψ = vρ

This indicates that J is the probability flux of the particles, i.e. the velocity times density.
Hence the equation

∂ρ

∂t
= −∂J

∂x

is a continuity equation saying that the probability density can only change due to a
probability flux, i.e. due to motion of the particles. This is discussed in detail in Handout 1.

7. For z = x+ iy with x and y real, then

z + z∗

2
=
x+ iy + x− iy

2
=

2x
2

= x

i.e. the real part of z. Similarly

z − z∗

2
=
x+ iy − x+ iy

2
=

2iy
2

= iy

i.e. i times the imaginary part of z and, since y is real, this is purely imaginary.

The derivatives part of J is (
∂ψ∗

∂x

)
ψ − ψ∗

(
∂ψ

∂x

)
where the two terms are clearly complex conjugates of each other. Hence, this is equivalent
to z− z∗ and so is purely imaginary. Since J is formed by multiplying this by i (and other
real factors), then this makes J purely real, as would be expected for a physical quantity
such as the flux.
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Second Year Quantum Mechanics - Classwork 2 Solutions

Orthogonality of energy states

Paul Dauncey, 28 Oct 2011

1. To normalise the states, we will need to use the relations given

cos2 α =
1
2

(1 + cos 2α) , sin2 α =
1
2

(1− cos 2α)

For the infinite square well problem it is only necessary to integrate from −a to a since the
wavefunction is zero outside this range. The normalisation for the cosine states is given
by calculating ∫ a

−a
cos2

nπx

2a
dx =

1
2

∫ a

−a
1 + cos

nπx

a
dx

=
1
2

[
x+

a

nπ
sin

nπx

a

]a
−a

= a

since the sine terms are zero, so that we can set A = 1/
√
a for all n. For the sine states∫ a

−a
sin2 nπx

2a
dx =

1
2

∫ a

−a
1− cos

nπx

a
dx

=
1
2

[
x− a

nπ
sin

nπx

a

]a
−a

= a

so also B = 1/
√
a for all n.

2. For the total probability, the first two integrals are as above for n = 1 and 2, while the third
integral is an odd function of x and so is zero by inspection. Hence, the total probability
is ∫ a

−a
|ψs|2 dx =

1
2a

(a+ a) = 1

and so is normalised and constant, as required.

3. If u1 and u3 are orthogonal then ∫ a

−a
u∗1u3 dx = 0

The relevant wavefunctions are u1 = cos(πx/2a)/
√
a and u3 = cos(3πx/2a)/

√
a.∫ a

−a

1√
a

cosπx/2a
1√
a

cos 3πx/2a dx =
1
a

2a
π

∫ π/2

−π/2
cos θ cos 3θ dθ

=
1
π

∫ π/2

−π/2
2 cos θ cos 3θ dθ

where θ = πx/2a. Now, using the relation given

2 cos θ cos 3θ = cos 4θ + cos 2θ

so that

1
π

∫ π/2

−π/2
2 cos θ cos 3θ dθ =

1
π

(∫ π/2

−π/2
cos 4θdθ +

∫ π/2

−π/2
cos 2θdθ

)

=
1
π

[
1
4

sin 4θ +
1
2

sin 2θ
]π/2

−π/2

= 0

1



so that the u1 and u3 are indeed orthogonal.

This is a more surprising result than for u1 and u2 since the integrand is not an odd
function, so it is not so obvious that the relevant integral vanishes.

4. The harmonic oscillator ground and first excited state integral is∫ ∞
−∞

U∗0U1 dx =
∫ ∞
−∞

C∗ exp(−αx2/2)Dx exp(−αx2/2) dx = C∗D

∫ ∞
−∞

x exp(−αx2) dx = 0

since this is again an odd integral.

For the ground and second excited state, then∫ ∞
−∞

U∗0U2 dx =
∫ ∞
−∞

C∗ exp(−αx2/2) F (2αx2 − 1) exp(−αx2/2) dx

= C∗F

∫ ∞
−∞

(2αx2 − 1) exp(−αx2) dx

= C∗F

(
2α
∫ ∞
−∞

x2 exp(−αx2) dx−
∫ ∞
−∞

exp(−αx2) dx
)

= C∗F

(
2α

1
2α

√
π

α
−
√
π

α

)
= 0

5. For the general superposition given |ψs|2 can be written

|ψs|2 = ψ∗sψs =

(∑
n

a∗nu
∗
ne

iEnt/h̄

)(∑
m

amume
−iEmt/h̄

)
=

∑
n

|an|2|un|2 +
∑
n6=m

a∗nu
∗
namume

i(En−Em)t/h̄

Hence∫ ∞
−∞

|ψs|2 dx =
∑
n

|an|2
∫ ∞
−∞

|un|2 dx+
∑
n6=m

a∗name
i(En−Em)t/h̄

∫ ∞
−∞

u∗num dx

=
∑
n

|an|2
∫ ∞
−∞

|un|2 dx

All terms in the second sum contain u∗num so when these terms are integrated over all
space, orthogonality ensures that they all vanish, leaving only the first sum, which is
clearly time independent.

2



Second Year Quantum Mechanics - Classwork 3 Solutions

Measurements and probabilities

Paul Dauncey, 8 Nov 2011

1. (a) Following the measurement, the particle is in eigenstate u1 of the potential, and so
the wave function is ψ(x) = u1(x) = cos(πx/2a)/

√
a.

(b) Since ψ(x) is an eigenstate of energy, then subsequent energy measurements yield the
corresponding eigenvalue, i.e. E1 is the only possible result.

(c) ψ(x) must be normalized, since u1(x) is normalized, so the probability of |x| < a/2 is∫ a/2

−a/2
|ψ(x)|2dx =

1
a

∫ a/2

−a/2
cos2

πx

2a
dx =

1
2a

∫ a/2

−a/2

(
cos

πx

a
+ 1

)
dx

=
1
2a

[
a

π
sin

πx

a
+ x

]a/2

−a/2
=

1
2a

[
2a
π

+ a

]
=

1
2

[
2
π

+ 1
]

= 0.818

2. After the walls are shifted suddenly at t = 0, the wave function is

ψ(x, t = 0) = 1√
a cos πx

2a : |x| < a

0 : |x| > a

Solutions for the energy eigenstates for the new potential, u′ can be obtained simply by
replacing a→ 2a in the solutions for the old potential, i.e.

n odd : u′n(x) =
1√
2a

cos
nπx

4a

n even : u′n(x) =
1√
2a

sin
nπx

4a

3. The probability of a measurement giving En is |cn|2, where cn is given by the overlap
integral between the eigenstate u′n and the wavefunction. The integral only needs to go
over x = ±a as the wavefunction is zero outside this range. For even n

cn =
∫ ∞

−∞
u′∗n (x)ψ(x, 0) dx =

1
a
√

2

∫ a

−a
sin

nπx

4a
cos

πx

2a
dx = 0

as this is an odd function. Hence the probability of measuring any eigenvalue corresponding
to an even value of n is zero.

4. For odd n

cn =
∫ a

−a
u′∗n (x)ψ(x, 0) dx =

1
a
√

2

∫ a

−a
cos

nπx

4a
cos

πx

2a
dx

=
1

2a
√

2

∫ a

−a

[
cos

(n+ 2)πx
4a

+ cos
(n− 2)πx

4a

]
dx

=
1

2a
√

2

[
4a

(n+ 2)π
sin

(n+ 2)πx
4a

+
4a

(n− 2)π
sin

(n− 2)πx
4a

]a

−a

=
2
√

2
π

[
1

n+ 2
sin

(
nπ

4
+
π

2

)
+

1
n− 2

sin
(
nπ

4
− π

2

)]
Noting

sin
(
nπ

4
± π

2

)
= sin

nπ

4
cos

π

2
± cos

nπ

4
sin

π

2
= ± cos

nπ

4

1



then

cn =
2
√

2
π

[
1

n+ 2
cos

nπ

4
− 1
n− 2

cos
nπ

4

]
=

2
√

2
(n2 − 4)π

[
(n− 2) cos

nπ

4
− (n+ 2) cos

nπ

4

]
= −8

√
2 cos(nπ/4)
π(n2 − 4)

Note, cos(nπ/4) = ±1/
√

2 for odd n.

(a) For n = 1, then c1 = 8/3π so the probability is P1 = |c1|2 = (8/3π)2 = 0.72.

(b) For n = 3, then c3 = 8/5π so the probability is P3 = |c3|2 = (8/5π)2 = 0.26.

(c) The total probability must be one, so the sum of probabilities for all odd n > 3 must
be 1− 0.72− 0.26 = 0.02.

5. Using the suggested approximation, then the wavefunction is a superposition of only two
eigenstates

Hence we can approximate the wavefunction to

ψ(x, t) ≈ c1u1(x) exp(−iE1t/h̄) + c3u3(x) exp(−iE3t/h̄)

and using the formula given on the question sheet

Prob(|x| < a/2) =
∫ a/2

−a/2
|ψ(x, t)|2 dx

=
|c1|2

2a

∫ a/2

−a/2
cos2

πx

4a
dx+

|c3|2

2a

∫ a/2

−a/2
cos2

3πx
4a

dx

+

{
c1c3
a

∫ a/2

−a/2
cos

πx

4a
cos

3πx
4a

dx

}
cos

[
(E3 − E1)t

h̄

]
.

The first two terms are constant. When t = 0, the cos[(E3 − E1)t/h̄] factor is at its
maximum of one. For any future time, the cosine will be less than or equal to one. Since
c1 and c3 are positive and, from the diagram above, it is clear the third integral will be
positive, then the probability is at its maximum at t = 0. The reason that the probability
of finding the particle within ±a/2 is smaller for t > 0 than initially is because the particle
is no longer confined to the original box, but can spread out into the region between ±2a.
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Second Year Quantum Mechanics - Classwork 4 Solutions

Expectation values

Paul Dauncey, 18 Nov 2011

1. Changing from x to y gives

Ĥ =
−h̄2

2m
d2

dx2
+

1
2
mω2

0x
2 : Change variables x = ay,

d2

dx2
=

1
a2

d2

dy2

=
−h̄2

2m
1
a2

d2

dy2
+

1
2
mω2

0a
2y2 : substitute : a =

√
h̄

mω0

= − h̄ω0

2
d2

dy2
+
h̄ω0

2
y2 =

1
2
h̄ω0

(
− d2

dy2
+ y2

)

2. (a) Checking the normalisation

ψ(y) =
(

2
3
√
π

)1/2

(1 + iy) exp(−y2/2)∫ ∞
−∞

ψ∗ψ dy =
2

3
√
π

∫ ∞
−∞

(1 + y2) exp(−y2) dy

=
2

3
√
π

∫ ∞
−∞

exp(−y2) dy +
2

3
√
π

∫ ∞
−∞

y2 exp(−y2) dy

=
2

3
√
π

√
π +

2
3
√
π

√
π

2
=

2
3

+
1
3

= 1

so ψ is normalized.

(b) The expectation value of y2 is given by

〈y2〉 =
∫ ∞
−∞

ψ∗ y2 ψ dy =
∫ ∞
−∞

y2|ψ|2 dy

=
2

3
√
π

∫ ∞
−∞

y2 exp(−y2) dy +
2

3
√
π

∫ ∞
−∞

y4 exp(−y2) dy

=
2

3
√
π

√
π

2
+

2
3
√
π

3
√
π

4
=

1
3

+
1
2

=
5
6

Hence, since from above V̂ = (h̄ω0/2)y2, then

〈V 〉 =
1
2
h̄ω0〈y2〉 =

5
12
h̄ω0

(c) For the kinetic energy, since from above T̂ = −(h̄ω0/2) d2/dy2, then

〈T 〉 = − h̄ω0

2

∫ ∞
−∞

ψ∗
d2ψ

dy2
dy =

h̄ω0

2

∫ ∞
−∞

∣∣∣∣dψdy
∣∣∣∣2 dy

Since

dψ

dy
=

(
2

3
√
π

)1/2 [
−y exp(−y2/2) − iy2 exp(−y2/2) + i exp(−y2/2)

]
=

(
2

3
√
π

)1/2 [
−y exp(−y2/2) + i(1 − y2) exp(−y2/2)

]

1



then ∣∣∣∣dψdy
∣∣∣∣2 =

(
2

3
√
π

) [
y2 exp(−y2) + (1 − y2)2 exp(−y2)

]
=

(
2

3
√
π

)
(y4 − y2 + 1) exp(−y2)

Hence 〈
d2

dy2

〉
= −

∫ ∞
−∞

(
2

3
√
π

)
(y4 − y2 + 1) exp(−y2) dy

= −
(

2
3
√
π

)[
3
√
π

4
−

√
π

2
+
√
π

]
= −5

6

so

〈T 〉 = −1
2
h̄ω0

〈
d2

dy2

〉
=

5
12
h̄ω0

(d) The total energy is the sum of the kinetic and potential energies so

〈E〉 = 〈T 〉 + 〈V 〉 =
5
6
h̄ω0

3. (a) The wavefunction is

ψ(y) =
(

2
3
√
π

)1/2

(1 + iy) exp(−y2/2)

We want ψ =
∑

n anun; by inspection

ψ =
√

2
3
u0 +

i√
3
u1

so

a0 =
√

2
3
, a1 =

i√
3

Hence

P (E0) = |a0|2 =
2
3
, P (E1) = |a1|2 =

1
3

and so
∑

n |an|2 = 1 as required. The same result could be obtained by doing the
overlap integrals

an =
∫ ∞
−∞

u∗nψ dy

(b) A direct calculation of 〈E〉 using the above probabilities gives

〈E〉 =
∑
n

|an|2En

=
2
3
E0 +

1
3
E1 =

h̄ω0

3
+
h̄ω0

2
=

5h̄ω0

6

Therefore, the calculation of the expectation value using the operator integral gives
the same result as using the statistical weighted average.
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Second Year Quantum Mechanics - Classwork 5 Solutions

The Uncertainty Principle

Paul Dauncey, 29 Nov 2011

1. Consider [x̂, p̂] acting on a state ψ(x):

[x̂, p̂]ψ = (x̂p̂− p̂x̂)ψ = x

(
−ih̄ d

dx

)
ψ + ih̄

d

dx
(xψ)

= −xih̄dψ
dx

+ ih̄x
dψ

dx
+ ih̄ψ = ih̄ψ

Hence [x̂, p̂] = ih̄.

2. (a) Terms in {} brackets in the following calculation have been substituted using the stan-
dard integrals as given.

The particle is described by ψ(x) =
1√
a

sin
nπx

2a
, so

〈x〉 =
∫ ∞
−∞

ψ∗xψ dx =
1
a

∫ 2a

0
x sin2 nπx

2a
dx

=
1
2a

∫ 2a

0
x

[
1 − cos

nπx

a

]
dx =

1
2a

[
x2

2

]2a

0

− 1
2a

∫ 2a

0
x cos

nπx

a
dx

=
1
2a

4a2

2
− 1

2a
{0} = a

as expected by the symmetry of the potential. Also

〈x2〉 =
∫ ∞
−∞

ψ∗x2ψ dx =
1
a

∫ 2a

0
x2 sin2 nπx

2a
dx

=
1
2a

∫ 2a

0
x2
[
1 − cos

nπx

a

]
dx

=
1
2a

[
x3

3

]2a

0

− 1
2a

∫ 2a

0
x2 cos

nπx

a
dx

=
1
2a

8a3

3
− 1

2a

{
4a3

n2π2

}
=

4a2

3
− 2a2

n2π2

For momentum

〈p〉 =
∫ ∞
−∞

ψ∗
(
−ih̄ d

dx

)
ψ dx =

−ih̄
a

∫ 2a

0
sin

nπx

2a

(
nπ

2a

)
cos

nπx

2a
dx

=
−ih̄nπ

4a2

∫ 2a

0
sin

nπx

a
dx =

−ih̄nπ
4a2

{0} = 0

as expected for a bound state. Finally

〈p2〉 =
∫ ∞
−∞

ψ∗
(

(−ih̄)2 d
2

dx2

)
ψ dx =

−h̄2

a

∫ 2a

0
sin

nπx

2a

(
−n

2π2

4a2

)
sin

nπx

2a
dx

=
h̄2n2π2

4a3

∫ 2a

0
sin2 nπx

2a
dx =

h̄2n2π2

8a3

∫ 2a

0

[
1 − cos

nπx

a

]
dx

=
h̄2n2π2

8a3

(
[x]2a

0 − {0}
)

=
h̄2n2π2

4a2

1



(b) The mean square values are

(∆x)2 = 〈x2〉 − 〈x〉2 =
4a2

3
− 2a2

n2π2
− a2 = a2

[
1
3
− 2
n2π2

]
.

(∆p)2 = 〈p2〉 − 〈p〉2 =
h̄2n2π2

4a2

Hence

(∆x)2(∆p)2 =
h̄2n2π2

4

[
1
3
− 2
n2π2

]
=
h̄2

4

[
n2π2

3
− 2

]

∆x∆p =
h̄

2

[
n2π2

3
− 2

]1/2

(c) When n = 1, this is
√

(π2/3 − 2)(h̄/2) = 1.14(h̄/2) and so is real, i.e. the first term
in the square root is larger than the second. Clearly, for bigger n, this will remain
true and so for n > 1, the uncertainty product will always be larger than for n = 1.
Hence the ground state has the smallest value of the uncertainty product.

3. The given uncertainty relation for Â = x̂ and B̂ = p̂ is

∆x∆p ≥
∣∣∣∣〈 i2 [x̂, p̂]

〉∣∣∣∣
(a) Using the commutator, the expectation value on the RHS for any normalized wave-

function is 〈
i

2
[x̂, p̂]

〉
=
〈
− h̄

2

〉
= − h̄

2

∫ ∞
−∞

ψ∗ψ dx = − h̄
2

so the right hand side of the uncertainty relation is | − h̄/2| = h̄/2.

(b) As shown in question 2(c), ∆x∆p = 1.14(h̄/2) for n = 1 and is larger for n > 1.
Hence ∆x∆p > h̄/2 for all n and so the inequality is always valid.

(c) The ground state (n = 1) has the smallest uncertainty product but it is not a true
minimum uncertainty state since it has ∆x∆p > h̄/2, rather than ∆x∆p = h̄/2.
Only a Gaussian function (e.g. the ground state of the SHO) is a true minimum
uncertainty state.
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Second Year Quantum Mechanics - Classwork 6 Solutions

Angular momentum operators

Paul Dauncey, 6 Dec 2011

1. (a) Y0 0 is not a function of θ or φ. Hence, taking a derivative of φ will give zero, so

L̂zY0 0 = 0 = 0× Y0 0

Hence, Y0 0 is an eigenstate of L̂z with eigenvalue 0.

(b) Similarly, a derivative of θ on Y0 0 gives zero so

L̂xY0 0 = 0, L̂yY0 0 = 0

Hence
L̂±Y0 0 = 0

2. (a) Y1 0 is not a function of φ so operating with L̂z gives

L̂zY1 0 = 0 = 0× Y1 0

while

L̂zY1±1 = ±ih̄

√
3
8π

sin θ
∂

∂φ
(e±iφ) = ±ih̄

√
3
8π

sin θ(±ie±iφ)

= −h̄

√
3
8π

sin θe±iφ = (±h̄)Y1±1

Hence, all three of the l = 1 spherical harmonics are eigenstates of L̂z, with eigenvalues
of 0 and ±h̄, respectively.

(b) Operating with L̂x and L̂y on Y1 0 gives

L̂xY1 0 = ih̄

√
3
4π

sinφ
∂

∂θ
(cos θ) = −ih̄

√
3
4π

sinφ sin θ

and

L̂yY1 0 = −ih̄

√
3
4π

cos φ
∂

∂θ
(cos θ) = ih̄

√
3
4π

cos φ sin θ

Hence

L̂±Y1 0 = L̂xY1 0 ± iL̂yY1 0 = −ih̄

√
3
4π

sinφ sin θ ∓ h̄

√
3
4π

cos φ sin θ

= ∓h̄

√
3
4π

sin θ(cos φ± i sinφ) = ∓
√

2h̄

√
3
8π

sin θe±iφ =
√

2h̄Y1±1

Hence, L̂± changes Y1 0 into states proportional to Y1±1, as expected.

(c) Operating with L̂x and L̂y on Y1 1 gives

L̂xY1 1 = ih̄

√
3
8π

(
− sinφ cos θeiφ − i cos φ cot θ sin θeiφ

)
= h̄

√
3
8π

cos θeiφ(−i sinφ + cos φ) =
h̄√
2

√
3
4π

cos θeiφe−iφ =
h̄√
2
Y1 0

1



and

L̂yY1 1 = ih̄

√
3
8π

(
cos φ cos θeiφ − i sinφ cot θ sin θeiφ

)
= ih̄

√
3
8π

cos θeiφ(cos φ− i sinφ) =
ih̄√
2

√
3
4π

cos θeiφe−iφ =
ih̄√
2
Y1 0

Hence
L̂−Y1 1 =

h̄√
2
Y1 0 − i

ih̄√
2
Y1 0 =

h̄√
2
Y1 0 +

h̄√
2
Y1 0 =

√
2h̄Y1 0

i.e. it is proportional to Y1 0, as expected.

(d) Operating with L̂+ gives

L̂+Y1 1 =
h̄√
2
Y1 0 + i

ih̄√
2
Y1 0 =

h̄√
2
Y1 0 −

h̄√
2
Y1 0 = 0

3. For part 1(b) when l = 0, the only allowed value is ml = 0 so the ladder operators should
not be able to create a state with any higher or lower values of ml. Specifically, we should
have L̂+Y0 0 = 0 and L̂−Y0 0 = 0, as was found.

For part 2(d) when l = 1, then the highest allowed value is ml = 1 so we cannot raise this
further, and so we expect L̂+Y1 1 = 0, again as found. (We would also find L̂−Y1−1 = 0 if
we had calculated that.)

Generally, the highest and lowest values are ml = ±l so we should always find L̂+Yl l = 0
and L̂−Yl−l = 0 for any value of l.
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Second Year Quantum Mechanics - Classwork 7 Solutions

Hydrogen atom

Paul Dauncey, 16 Dec 2011

1. Angular momentum eigenstates are the spherical harmonics Yl ml
(θ, φ). They can be mul-

tiplied by any function of r.

(a) The given wavefunction can be expanded in terms of the spherical harmonics by
inspection. Noting

Y1 0 ∝ cos θ, Y1 1 ∝ sin θeiφ

then putting√
3

16π

[√
2 cos θ − sin θeiφ

]
=

∑
l,ml

al ml
Yl ml

= a1 0Y1 0 + a1 1Y1 1

= a1 0

√
3
4π

cos θ − a1 1

√
3
8π

sin θeiφ

gives

a1 0

√
3
4π

=
√

3
16π

√
2, a1 0 =

1√
2

a1 1

√
3
8π

=
√

3
16π

, a1 1 =
1√
2

Note
∑

l,ml
|al ml

|2 = 1 which checks the angular part of the wavefunction is indeed
normalised. Hence, the angular part is√

3
16π

[√
2 cos θ − sin θeiφ

]
=

1√
2
(Y1 0 + Y1 1)

(b) The wavefunction decomposition includes

Y1 0: eigenvalue of L2 is l(l + 1)h̄2 = 2h̄2

eigenvalue of Lz is mlh̄ = 0
Y1 1: eigenvalue of L2 is l(l + 1)h̄2 = 2h̄2

eigenvalue of Lz is mlh̄ = h̄

Hence, the only possible result of a measurement of L2 is 2h̄2. The two possible
results of a measurement of Lz are 0 or h̄.

(c) Since a1 0 = 1/
√

2, the probability of measuring Lz = 0 is |a1 0|2 = 1/2.

2. (a) Writing ψ(r) as

ψ(r) = R(r)
1√
2

(Y1 0 + Y1 1)

then the normalisation is checked by calculating∫ ∫ ∫
|ψ|2 d3r =

∫ 2π

0

∫ π

0

∫ ∞

0
|ψ|2 r2 dr sin θ dθ dφ

=
∫ ∞

0
|R(r)|2 r2 dr

∫ 2π

0

∫ π

0

1
2
|Y1 0 + Y1 1|2 sin θ dθ dφ

1



Assuming that the spherical harmonics are orthonormal, then the second integral
gives∫ 2π

0

∫ π

0

1
2
|Y1 0 + Y1 1|2 sin θ dθ dφ =

1
2

∫ 2π

0

∫ π

0
(|Y1 0|2 + Y ∗1 0Y1 1 + Y ∗1 1Y1 0 + |Y1 1|2) sin θ dθ dφ

=
1
2

[∫ 2π

0

∫ π

0
|Y1 0|2 sin θ dθ dφ+

∫ 2π

0

∫ π

0
|Y1 1|2 sin θ dθ dφ

]
=

1
2

[1 + 1] = 1

The radial part is

1
24a3

0

∫ ∞

0

r2

a2
0

e−r/a0 r2 dr =
1

24a5
0

∫ ∞

0
r4e−r/a0 dr =

1
24a5

0

(4!a5
0) = 1

so the total wavefunction is indeed normalised.

(b) For the mean square radius, the angular part again integrates to unity, so

〈r2〉 =
1

24a3
0

∫ ∞

0
r2
r2

a2
0

e−r/a0 r2 dr

=
1

24a5
0

∫ ∞

0
r6e−r/a0 dr =

1
24a5

0

(6!a7
0) = 30a2

0

Hence, the RMS separation is
√

30a0 = 5.5a0 = 2.7× 10−10 m.

(c) Comparing the radial part of the wavefunction

R(r) ∝ re−r/2a0

with the expectation for an energy eigenstate, then since the eigenstates go as e−r/na0 ,
then the exponent implies this wavefunction only contains eigenstates with n = 2.
The r factor is a polynomial of degree 1 which is consistent with n = 2. Also, it
clearly goes as r1 for small r, which implies l = 1 (which is also consistent with
l < n = 2 and the spherical harmonics considered in part 1). Hence, the radial part
is consistent with a single eigenstate, R21(r). Therefore, we conclude

ψ = R2 1 ×
1√
2
(Y1 0 + Y1 1) =

1√
2
(u2 1 0 + u2 1 1)

Hence, the only possible energy measurement outcome corresponds to n = 2, which
gives an energy

En = −13.6 eV
n2

= −3.4 eV
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