
Year	  2	  -‐	  Quantum	  Mechanics	  
Revision	  Lecture	  

Paul	  Dauncey	  

22/05/2012	   1	  Paul	  Dauncey	  -‐	  Quantum	  Mechanics	  



Office	  Hours	  
•  I	  will	  hold	  four	  office	  hours	  between	  now	  and	  
the	  exam	  
– These	  will	  be	  in	  my	  office,	  BlackeK	  506	  

•  The	  Mmes	  and	  dates	  are	  already	  listed	  on	  
Blackboard	  and	  on	  the	  Level	  3	  noMce	  board	  
– Week	  4:	  Tue	  22	  May	  12.00,	  Thu	  24	  May	  14.00	  	  
– Week	  5:	  Tue	  29	  May	  12.00	  
– Week	  6:	  Thu	  7	  June,	  14.00	  
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Exam	  format	  
•  This	  is	  the	  fourth	  year	  I	  have	  taught	  this	  course	  

– The	  syllabus	  has	  also	  been	  unchanged	  for	  (at	  least)	  
the	  previous	  five	  years	  

•  The	  exam	  this	  year	  will	  be	  in	  the	  same	  format,	  
style	  and	  level	  as	  for	  (at	  least)	  the	  last	  eight	  
years	  
– Two	  hours	  
– 3/6	  quesMons	  required	  
– Do	  not	  assume	  anything	  either	  way	  about	  Qu	  6...	  
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4. When considering radial motion in both classical and quantum mechanics, systems
with a central potential V (r) can be treated as having an effective potential

VEff(r) =
L2

2mr2 + V (r),

where L is the magnitude of the orbital angular momentum, which is constant for a
central potential. Consider the case of an electron orbiting a proton in a hydrogen
atom.

(i) Write down an expression for V (r) for the Coulomb potential experienced by
the electron. Qualitatively sketch the form of VEff(r) for the two cases of L = 0
and L > 0. Hence, explain under what condition would the particle be able to
approach very close to the centre of the potential. [4 marks]

(ii) Treating the atom as a classical system with L > 0, show that the radius of the
circular orbit for a given L is

rC =
4⇡✏0L2

me2 .

[4 marks]

(iii) Neglecting spin terms, the quantum energy eigenstates in a central potential
can be written

un l ml =
�n l(r)

r
Yl ml (✓, �),

where Yl ml are the normalised spherical harmonics. Show that the eigenstate is
normalised if the radial function satisfies

Z
|�n l |2 dr = 1.

[2 marks]

(iv) For a given l, the radial function solution with the lowest energy has n = l + 1
and is given by

�n l = Arne�r/na0 ,

where a0 = 4⇡✏0~2/me2 is the Bohr radius and A is a normalisation constant.
Show that

|A |2 =
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

.

[5 marks]

(v) For a particle in the state given in part (iv), show that the expectation value of
the particle radius is

hri =
(2l + 3)(l + 1)

2
a0.

[3 marks]

2011/P2.1 5
[This question continues on the

next page . . . ]
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4. ANSWER:

(i) The Coulomb potential for the hydrogen atom is

V (r) = � e2

4⇡✏0r

The angular momentum term in the effective potential goes as 1/r2 and so, for
L > 0, this dominates for small r while the Coulomb term dominates for large r .
Hence the effective potential is as shown below.

This means there is a large barrier for the electron to approach the origin for the
case of L > 0. Hence, the electron can only get close to the origin if L = 0.

[4 marks]

(ii) The particle will orbit classically at the radius rC where the forces balance. This
is when

dVEff

dr
= 0 = � L2

mr3
C

+
e2

4⇡✏0r2
C

Hence

L2

mrC
=

e2

4⇡✏0
so rC =

4⇡✏0L2

me2

Alternative: Since for a circular orbit L = mvr , then setting the forces equal gives

e2

4⇡✏0r2
C

=
mv2

rC
=

m
rC

L2

m2r2
C

=
L2

mr3
C

so rC =
4⇡✏0L2

me2

as before. [4 marks]

2011/P2.1 ANSWERS 9
[This question continues on the

next page . . . ]

= Coulomb only 

~ −1/r 

~ +1/r2 = potential “barrier” 
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4. When considering radial motion in both classical and quantum mechanics, systems
with a central potential V (r) can be treated as having an effective potential

VEff(r) =
L2

2mr2 + V (r),

where L is the magnitude of the orbital angular momentum, which is constant for a
central potential. Consider the case of an electron orbiting a proton in a hydrogen
atom.

(i) Write down an expression for V (r) for the Coulomb potential experienced by
the electron. Qualitatively sketch the form of VEff(r) for the two cases of L = 0
and L > 0. Hence, explain under what condition would the particle be able to
approach very close to the centre of the potential. [4 marks]

(ii) Treating the atom as a classical system with L > 0, show that the radius of the
circular orbit for a given L is

rC =
4⇡✏0L2

me2 .

[4 marks]

(iii) Neglecting spin terms, the quantum energy eigenstates in a central potential
can be written

un l ml =
�n l(r)

r
Yl ml (✓, �),

where Yl ml are the normalised spherical harmonics. Show that the eigenstate is
normalised if the radial function satisfies

Z
|�n l |2 dr = 1.

[2 marks]

(iv) For a given l, the radial function solution with the lowest energy has n = l + 1
and is given by

�n l = Arne�r/na0 ,

where a0 = 4⇡✏0~2/me2 is the Bohr radius and A is a normalisation constant.
Show that

|A |2 =
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

.

[5 marks]

(v) For a particle in the state given in part (iv), show that the expectation value of
the particle radius is

hri =
(2l + 3)(l + 1)

2
a0.

[3 marks]

2011/P2.1 5
[This question continues on the

next page . . . ]
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4. ANSWER:

(i) The Coulomb potential for the hydrogen atom is

V (r) = � e2

4⇡✏0r

The angular momentum term in the effective potential goes as 1/r2 and so, for
L > 0, this dominates for small r while the Coulomb term dominates for large r .
Hence the effective potential is as shown below.

This means there is a large barrier for the electron to approach the origin for the
case of L > 0. Hence, the electron can only get close to the origin if L = 0.

[4 marks]

(ii) The particle will orbit classically at the radius rC where the forces balance. This
is when

dVEff

dr
= 0 = � L2

mr3
C

+
e2

4⇡✏0r2
C

Hence

L2

mrC
=

e2

4⇡✏0
so rC =

4⇡✏0L2

me2

Alternative: Since for a circular orbit L = mvr , then setting the forces equal gives

e2

4⇡✏0r2
C

=
mv2

rC
=

m
rC

L2

m2r2
C

=
L2

mr3
C

so rC =
4⇡✏0L2

me2

as before. [4 marks]

2011/P2.1 ANSWERS 9
[This question continues on the

next page . . . ]

No radial force 

Coulomb = 
centrifugal 

so v = L/mr 
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4. When considering radial motion in both classical and quantum mechanics, systems
with a central potential V (r) can be treated as having an effective potential

VEff(r) =
L2

2mr2 + V (r),

where L is the magnitude of the orbital angular momentum, which is constant for a
central potential. Consider the case of an electron orbiting a proton in a hydrogen
atom.

(i) Write down an expression for V (r) for the Coulomb potential experienced by
the electron. Qualitatively sketch the form of VEff(r) for the two cases of L = 0
and L > 0. Hence, explain under what condition would the particle be able to
approach very close to the centre of the potential. [4 marks]

(ii) Treating the atom as a classical system with L > 0, show that the radius of the
circular orbit for a given L is

rC =
4⇡✏0L2

me2 .

[4 marks]

(iii) Neglecting spin terms, the quantum energy eigenstates in a central potential
can be written

un l ml =
�n l(r)

r
Yl ml (✓, �),

where Yl ml are the normalised spherical harmonics. Show that the eigenstate is
normalised if the radial function satisfies

Z
|�n l |2 dr = 1.

[2 marks]

(iv) For a given l, the radial function solution with the lowest energy has n = l + 1
and is given by

�n l = Arne�r/na0 ,

where a0 = 4⇡✏0~2/me2 is the Bohr radius and A is a normalisation constant.
Show that

|A |2 =
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

.

[5 marks]

(v) For a particle in the state given in part (iv), show that the expectation value of
the particle radius is

hri =
(2l + 3)(l + 1)

2
a0.

[3 marks]

2011/P2.1 5
[This question continues on the

next page . . . ]



QM	  knowledge	  
•  All	  physical	  states	  must	  be	  normalised	  to	  get	  
correct	  probabiliMes	  
– 1D:	  	  	  	  ∫	  ψ(x)* ψ(x)	  dx	  =	  1	  
– 3D:	  	  	  	  ∫	  ψ(r)* ψ(r)	  d3r	  =	  1	  

•  In	  3D	  using	  spherical	  harmonics,	  the	  integral	  
becomes	  
– ∫	  ψ(r,θ,φ)* ψ(r,θ,φ)	  r2dr	  sin(θ)dθ	  dφ	  =	  1	  
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(iii) To be normalised, the energy eigenstate must satisfy
Z
|u|2 d3r = 1 =

Z 1

0

|�|2
r2 r2 dr

Z
|Y |2 d⌦ =

Z 1

0
|�|2 dr

since the spherical harmonics are normalised. [2 marks]

(iv) From above
Z 1

0
|�|2 dr = 1 =

Z 1

0
|A |2r2ne�2r/na0 dr

With m = 2n and ↵ = 2/na0 then
Z 1

0
|�|2 dr = 1 = |A |2 m!

↵m+1 = |A |2(2n)!
✓na0

2

◆2n+1

Since n = l + 1, then this requires

|A |2 =
1

2n!

 
2

na0

!2n+1

=
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

[5 marks]

(v) The expectation value of r is given by

hri =
Z

u⇤r̂u d3r =
Z
|u|2r d3r =

Z 1

0
r |�|2 dr =

Z 1

0
|A |2r2n+1e�2r/na0 dr

= |A |2(2n + 1)!
✓na0

2

◆2n+2
= (2n + 1)

✓na0

2

◆
=

(2l + 3)(l + 1)
2

a0

[3 marks]

(vi) The correspondence principle states that the classical limit should correspond
to the limit of large quantum numbers. Specifically, for large l, then

hri ⇡ l ⇥ 2l
2

a0 = l2a0

The quantum angular momentum is this limit is

L2 = l(l + 1)~2 ⇡ l2~2

so

hri ⇡ L2a0

~2 =
L2

~2

4⇡✏0~2

me2 =
4⇡✏0L2

me2 = rC

[2 marks]

[Total 20 marks]

2011/P2.1 ANSWERS 10 Please go to the next page

=1 

N.B. Element of solid angle dΩ = sin(θ)dθ	  dφ	    
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4. When considering radial motion in both classical and quantum mechanics, systems
with a central potential V (r) can be treated as having an effective potential

VEff(r) =
L2

2mr2 + V (r),

where L is the magnitude of the orbital angular momentum, which is constant for a
central potential. Consider the case of an electron orbiting a proton in a hydrogen
atom.

(i) Write down an expression for V (r) for the Coulomb potential experienced by
the electron. Qualitatively sketch the form of VEff(r) for the two cases of L = 0
and L > 0. Hence, explain under what condition would the particle be able to
approach very close to the centre of the potential. [4 marks]

(ii) Treating the atom as a classical system with L > 0, show that the radius of the
circular orbit for a given L is

rC =
4⇡✏0L2

me2 .

[4 marks]

(iii) Neglecting spin terms, the quantum energy eigenstates in a central potential
can be written

un l ml =
�n l(r)

r
Yl ml (✓, �),

where Yl ml are the normalised spherical harmonics. Show that the eigenstate is
normalised if the radial function satisfies

Z
|�n l |2 dr = 1.

[2 marks]

(iv) For a given l, the radial function solution with the lowest energy has n = l + 1
and is given by

�n l = Arne�r/na0 ,

where a0 = 4⇡✏0~2/me2 is the Bohr radius and A is a normalisation constant.
Show that

|A |2 =
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

.

[5 marks]

(v) For a particle in the state given in part (iv), show that the expectation value of
the particle radius is

hri =
(2l + 3)(l + 1)

2
a0.

[3 marks]

2011/P2.1 5
[This question continues on the

next page . . . ]

(vi) Explain what is meant by the correspondence principle and show that in the cor-
respondence limit, the expectation value of the radius agrees with the classical
value rC . [2 marks]

[Total 20 marks]

Standard integral:
Z 1

0
rme�↵r dr =

m!
↵m+1 .

2011/P2.1 6 Please go to the next page



QM	  knowledge	  
•  ProperMes	  of	  the	  hydrogen	  atom	  

– Quantum	  numbers	  are	  constrained	  by	  n	  >	  l	  
– Energy	  goes	  up	  with	  n	  
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(iii) To be normalised, the energy eigenstate must satisfy
Z
|u|2 d3r = 1 =

Z 1

0

|�|2
r2 r2 dr

Z
|Y |2 d⌦ =

Z 1

0
|�|2 dr

since the spherical harmonics are normalised. [2 marks]

(iv) From above
Z 1

0
|�|2 dr = 1 =

Z 1

0
|A |2r2ne�2r/na0 dr

With m = 2n and ↵ = 2/na0 then
Z 1

0
|�|2 dr = 1 = |A |2 m!

↵m+1 = |A |2(2n)!
✓na0

2

◆2n+1

Since n = l + 1, then this requires

|A |2 =
1

2n!

 
2

na0

!2n+1

=
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

[5 marks]

(v) The expectation value of r is given by

hri =
Z

u⇤r̂u d3r =
Z
|u|2r d3r =

Z 1

0
r |�|2 dr =

Z 1

0
|A |2r2n+1e�2r/na0 dr

= |A |2(2n + 1)!
✓na0

2

◆2n+2
= (2n + 1)

✓na0

2

◆
=

(2l + 3)(l + 1)
2

a0

[3 marks]

(vi) The correspondence principle states that the classical limit should correspond
to the limit of large quantum numbers. Specifically, for large l, then

hri ⇡ l ⇥ 2l
2

a0 = l2a0

The quantum angular momentum is this limit is

L2 = l(l + 1)~2 ⇡ l2~2

so

hri ⇡ L2a0

~2 =
L2

~2

4⇡✏0~2

me2 =
4⇡✏0L2

me2 = rC

[2 marks]

[Total 20 marks]

2011/P2.1 ANSWERS 10 Please go to the next page

N.B. Squares 

Notation in  
standard integral 
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4. When considering radial motion in both classical and quantum mechanics, systems
with a central potential V (r) can be treated as having an effective potential

VEff(r) =
L2

2mr2 + V (r),

where L is the magnitude of the orbital angular momentum, which is constant for a
central potential. Consider the case of an electron orbiting a proton in a hydrogen
atom.

(i) Write down an expression for V (r) for the Coulomb potential experienced by
the electron. Qualitatively sketch the form of VEff(r) for the two cases of L = 0
and L > 0. Hence, explain under what condition would the particle be able to
approach very close to the centre of the potential. [4 marks]

(ii) Treating the atom as a classical system with L > 0, show that the radius of the
circular orbit for a given L is

rC =
4⇡✏0L2

me2 .

[4 marks]

(iii) Neglecting spin terms, the quantum energy eigenstates in a central potential
can be written

un l ml =
�n l(r)

r
Yl ml (✓, �),

where Yl ml are the normalised spherical harmonics. Show that the eigenstate is
normalised if the radial function satisfies

Z
|�n l |2 dr = 1.

[2 marks]

(iv) For a given l, the radial function solution with the lowest energy has n = l + 1
and is given by

�n l = Arne�r/na0 ,

where a0 = 4⇡✏0~2/me2 is the Bohr radius and A is a normalisation constant.
Show that

|A |2 =
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

.

[5 marks]

(v) For a particle in the state given in part (iv), show that the expectation value of
the particle radius is

hri =
(2l + 3)(l + 1)

2
a0.

[3 marks]

2011/P2.1 5
[This question continues on the

next page . . . ]



QM	  knowledge	  
•  The	  expectaMon	  value	  for	  operator	  Q	  is	  

– <Q>	  =	  ∫	  ψ(r)* Q ψ(r)	  d3r	  
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(iii) To be normalised, the energy eigenstate must satisfy
Z
|u|2 d3r = 1 =

Z 1

0

|�|2
r2 r2 dr

Z
|Y |2 d⌦ =

Z 1

0
|�|2 dr

since the spherical harmonics are normalised. [2 marks]

(iv) From above
Z 1

0
|�|2 dr = 1 =

Z 1

0
|A |2r2ne�2r/na0 dr

With m = 2n and ↵ = 2/na0 then
Z 1

0
|�|2 dr = 1 = |A |2 m!

↵m+1 = |A |2(2n)!
✓na0

2

◆2n+1

Since n = l + 1, then this requires

|A |2 =
1

2n!

 
2

na0

!2n+1

=
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

[5 marks]

(v) The expectation value of r is given by

hri =
Z

u⇤r̂u d3r =
Z
|u|2r d3r =

Z 1

0
r |�|2 dr =

Z 1

0
|A |2r2n+1e�2r/na0 dr

= |A |2(2n + 1)!
✓na0

2

◆2n+2
= (2n + 1)

✓na0

2

◆
=

(2l + 3)(l + 1)
2

a0

[3 marks]

(vi) The correspondence principle states that the classical limit should correspond
to the limit of large quantum numbers. Specifically, for large l, then

hri ⇡ l ⇥ 2l
2

a0 = l2a0

The quantum angular momentum is this limit is

L2 = l(l + 1)~2 ⇡ l2~2

so

hri ⇡ L2a0

~2 =
L2

~2

4⇡✏0~2

me2 =
4⇡✏0L2

me2 = rC

[2 marks]

[Total 20 marks]

2011/P2.1 ANSWERS 10 Please go to the next page

Y terms not 
written as  
they normalise 
to 1 again 

Exactly as before 
but with one more 
power of r 

Now need to substitute 
in value of |A|2 found in 
part iv 
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(vi) Explain what is meant by the correspondence principle and show that in the cor-
respondence limit, the expectation value of the radius agrees with the classical
value rC . [2 marks]

[Total 20 marks]

Standard integral:
Z 1

0
rme�↵r dr =

m!
↵m+1 .

2011/P2.1 6 Please go to the next page



QM	  knowledge	  
•  The	  correspondence	  principle	  says	  classical	  
mechanics	  must	  be	  a	  limit	  of	  quantum	  mechanics	  
– Several	  ways	  to	  state	  the	  correspondence	  limit	  
– Size	  >>	  λ,	  ħ	  -‐>	  0,	  quantum	  numbers	  -‐>	  ∞,	  Ehrenfest…	  
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(iii) To be normalised, the energy eigenstate must satisfy
Z
|u|2 d3r = 1 =

Z 1

0

|�|2
r2 r2 dr

Z
|Y |2 d⌦ =

Z 1

0
|�|2 dr

since the spherical harmonics are normalised. [2 marks]

(iv) From above
Z 1

0
|�|2 dr = 1 =

Z 1

0
|A |2r2ne�2r/na0 dr

With m = 2n and ↵ = 2/na0 then
Z 1

0
|�|2 dr = 1 = |A |2 m!

↵m+1 = |A |2(2n)!
✓na0

2

◆2n+1

Since n = l + 1, then this requires

|A |2 =
1

2n!

 
2

na0

!2n+1

=
1

(2l + 2)!

"
2

(l + 1)a0

#2l+3

[5 marks]

(v) The expectation value of r is given by

hri =
Z

u⇤r̂u d3r =
Z
|u|2r d3r =

Z 1

0
r |�|2 dr =

Z 1

0
|A |2r2n+1e�2r/na0 dr

= |A |2(2n + 1)!
✓na0

2

◆2n+2
= (2n + 1)

✓na0

2

◆
=

(2l + 3)(l + 1)
2

a0

[3 marks]

(vi) The correspondence principle states that the classical limit should correspond
to the limit of large quantum numbers. Specifically, for large l, then

hri ⇡ l ⇥ 2l
2

a0 = l2a0

The quantum angular momentum is this limit is

L2 = l(l + 1)~2 ⇡ l2~2

so

hri ⇡ L2a0

~2 =
L2

~2

4⇡✏0~2

me2 =
4⇡✏0L2

me2 = rC

[2 marks]

[Total 20 marks]

2011/P2.1 ANSWERS 10 Please go to the next page

Approximation 
to (l+1)(2l+3) 

so l2 ≈ L2/ħ2 



2011	  Exam	  QuesMon	  4	  Report	  

20	  Paul	  Dauncey	  -‐	  Quantum	  Mechanics	   20	  Paul	  Dauncey	  -‐	  Quantum	  Mechanics	  22/05/2012	  

Question 3

This question done by around half of the candidates. It contained a significant amount of
previously seen bookwork material and consequently many candidates did reasonably well.

Almost all candidates could do part (i), although a few incorrectly thought the expectation
value was the most probable (mode) rather the average (mean). Again most candidates knew
the relation required in part (ii), but many apparently only from memory as a large number
were not able to relate it to their answer for part (i). Part (iii) was done quite poorly; a majority
did not realise two di↵erent indices are needed when there are two di↵erent summations, and
several did not know the correct form of the orthonormality condition. In contrast, part (iv),
which is a standard derivation, was mainly done well. A significant minority of candidates
could not caculate [V, p̂] correctly in part (v) and most then fiddled the result to get what they
expected, hence losing even more marks. Several could not give Newton’s second law, or wrote
it as F = �dV/dx, which is simply a way of writing a conservative force in terms of a potential
and says nothing about dynamics. Around half the candidates could not relate their previous
answer to conservation of momentum in part (vi); the requirement that V was constant (not
necessarily zero) was often missed.

Question 4

This question was attempted by a very small number of candidates. Almost all did it well and
got quite high marks, although one did very poorly.

Part (i) seemed straightforward, with most sketches being reasonable and the correct con-
dition, namely L = 0, being stated. Similarly, being a simple classical calculation, part (ii) was
mainly correctly done. Part (iii) was done well, with almost all candidates knowing the correct
volume element in spherical polars. The calculations in part (iv) and (v) were done without
problems by most candidates. However, many of the answers to part (vi) did not clearly state
what is meant by the correspondence principle and did not specify which limit was needed. In
addition, the approximations used in this limit were often not applied consistently.

Question 5

This question done by approximately half of the candidates. The first half was previously seen
material and was done well; the rest was found to be more di�cult by most candidates.

Parts (i) and, to a lesser extent, part (ii) were done correctly by almost all candidates; most
errors were in the arithmetic. Showing [L̂2

, L̂±] = 0 in part (iii) was also done correctly by
almost all candidates, although several only did the calculation for only one of the two ladder
operators. However, many did not connect this commutator result with the lack of a change
to the eigenvalue, which is what the question actually asked, and hence lost marks. Part (iv)
was done very poorly; it required a simple statement that the magnitude of any component of a
vector could not be larger than the magnitude of the vector itself, but a majority of candidates
wrote irrelevant details about the l and m

l

quantum numbers, often saying m

l

had a limited
range, without actually giving the reason why there had to be any maximum or minimum values
for m

l

in the first place. In addition, a significant number of candidates wrote about energy
and ground states, which are nothing to do with angular momentum. Part (v) was also done
quite poorly with very few candidates getting full marks. Many did not realise that applying the
raising operator to the maximum L

z

state, or the lowering operator to the minimum L

z

state,
must give zero, which is the starting point of the calculation. There were also a large number
of arithmetical errors in the calculations.

2
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6. (i) The component operators for the spin angular momentum of a spin 1/2 particle
satisfy [Ŝx , Ŝy ] = i~Ŝz, and cyclic permutations. What does this imply for an
attempt to measure the three spin components simultaneously? [3 marks]

(ii) A general form for a two-component spin state is

� =
✓ cos(✓/2)ei↵

sin(✓/2)ei�

◆
.

where ✓, ↵ and � are parameters.

(a) Show that this state is normalised. [1 mark]
(b) Show that the expectation value of the spin x component is given by

hSxi =
~

2
sin ✓ cos �,

where � = � � ↵. [6 marks]
(c) The other two expectation values of the spin components are given by

hSyi =
~

2
sin ✓ sin �, hSzi =

~

2
cos ✓.

(Do not prove this.) Comment on the fact that the expectation values only
depend on the combination � � ↵ and not on these two values individually.

[1 mark]

(iii) A general form of the Heisenberg uncertainty relation is

�Q2�R2 �
*

i
2

[Q̂ , R̂]
+2

,

where �Q and �R are the RMS uncertainties in measurements of dynamical
variables Q and R, such that �Q2 = hQ2i � hQi2, and similarly for R. Consider
the case of Q̂ = Ŝx and R̂ = Ŝy .

(a) Evaluate the right-hand side of the above relation for the general state �.
What range of values can it take? [2 marks]

(b) Evaluate the left-hand side of the above relation for the general state � and
hence prove the relation is always satisfied. [5 marks]

(c) Show that when the equality holds for the relation, at least one of the ex-
pectation values hSxi and hSyi must be zero. [2 marks]

[Total 20 marks]

The spin component operators are Ŝi = ~�i/2, where the Pauli spin matrices are:

�x =
✓ 0 1

1 0

◆
, �y =

✓ 0 �i
i 0

◆
, �z =

✓ 1 0
0 �1

◆
.

Each of the Pauli spin matrices satisfies:

�2
i =
✓ 1 0

0 1

◆
= I.

2011/P2.1 8 End of examination paper



QM	  knowledge	  
•  CompaMble	  variable	  pairs	  share	  all	  eigenstates	  

– Their	  operators	  commute	  
•  Non-‐compaMble	  variable	  pairs	  cannot	  
generally	  both	  be	  in	  eigenstates	  	  
– Hence	  cannot	  have	  definite	  measurement	  
outcomes	  

•  If	  measure	  one	  of	  the	  two	  variables	  
– WavefuncMon	  collapses	  to	  its	  eigenstate	  

•  If	  then	  measure	  the	  other	  variable	  
– WavefuncMon	  collapses	  to	  different	  eigenstate	  
– First	  measurement	  eigenstate	  is	  lost	  
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6. (i) The component operators for the spin angular momentum of a spin 1/2 particle
satisfy [Ŝx , Ŝy ] = i~Ŝz, and cyclic permutations. What does this imply for an
attempt to measure the three spin components simultaneously? [3 marks]

(ii) A general form for a two-component spin state is

� =
✓ cos(✓/2)ei↵

sin(✓/2)ei�

◆
.

where ✓, ↵ and � are parameters.

(a) Show that this state is normalised. [1 mark]
(b) Show that the expectation value of the spin x component is given by

hSxi =
~

2
sin ✓ cos �,

where � = � � ↵. [6 marks]
(c) The other two expectation values of the spin components are given by

hSyi =
~

2
sin ✓ sin �, hSzi =

~

2
cos ✓.

(Do not prove this.) Comment on the fact that the expectation values only
depend on the combination � � ↵ and not on these two values individually.

[1 mark]

(iii) A general form of the Heisenberg uncertainty relation is

�Q2�R2 �
*

i
2

[Q̂ , R̂]
+2

,

where �Q and �R are the RMS uncertainties in measurements of dynamical
variables Q and R, such that �Q2 = hQ2i � hQi2, and similarly for R. Consider
the case of Q̂ = Ŝx and R̂ = Ŝy .

(a) Evaluate the right-hand side of the above relation for the general state �.
What range of values can it take? [2 marks]

(b) Evaluate the left-hand side of the above relation for the general state � and
hence prove the relation is always satisfied. [5 marks]

(c) Show that when the equality holds for the relation, at least one of the ex-
pectation values hSxi and hSyi must be zero. [2 marks]

[Total 20 marks]

The spin component operators are Ŝi = ~�i/2, where the Pauli spin matrices are:

�x =
✓ 0 1

1 0

◆
, �y =

✓ 0 �i
i 0

◆
, �z =

✓ 1 0
0 �1

◆
.

Each of the Pauli spin matrices satisfies:

�2
i =
✓ 1 0

0 1

◆
= I.
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QM	  knowledge	  
•  For	  a	  spin	  state	  vector	  χ	


– HermiMan	  conjugate:	  χ+ = (χ*)Τ = (χΤ)*	  

– NormalisaMon:	  χ+χ =	  1	  
– ExpectaMon	  value:	  <Q>	  =	  χ+Qχ	  

•  For	  any	  QM	  state,	  the	  overall	  phase	  is	  always	  
unobservable	  
– Must	  cancel	  out	  in	  calculaMon	  of	  any	  observable	  

22/05/2012	   24	  Paul	  Dauncey	  -‐	  Quantum	  Mechanics	  



2011	  Exam	  Answer	  6,	  Part	  ii	  

22/05/2012	   25	  Paul	  Dauncey	  -‐	  Quantum	  Mechanics	  

Note –i as C.C. 

Quantum Mechanics June 2011 ANSWERS May 18, 2012

6. ANSWER:

(i) Since none of the component operators commute with each other, then any
given state can only be an eigenstate of at most one of the three. Hence, it is
not possible to measure all three components without the later measurements
disturbing the state, and hence changing the values, of the components previ-
ously measured. Hence, all three components cannot be known simulateously.

[3 marks]

(ii) (a) The normalisation is given by

�†� = [ cos(✓/2)e�i↵ sin(✓/2)e�i� ]
 cos(✓/2)ei↵

sin(✓/2)ei�

�
= cos2(✓/2) + sin2(✓/2) = 1

and hence the state is indeed normalised. [1 mark]
(b) Evaluating the x component expectation value gives

hSxi = �†Ŝx� =
~

2
[ cos(✓/2)e�i↵ sin(✓/2)e�i� ]

 0 1
1 0

�  cos(✓/2)ei↵

sin(✓/2)ei�

�

=
~

2
[ cos(✓/2)e�i↵ sin(✓/2)e�i� ]

 sin(✓/2)ei�

cos(✓/2)ei↵

�

=
~

2
cos(✓/2) sin(✓/2)

h
ei(��↵) + e�i(��↵)

i
=
~

2
sin ✓ cos �

[6 marks]
(c) The overall phase of any state is not physically observable. Hence, any

arbitrary value could be added to both ↵ and � without changing any mea-
surable property of the system. Hence, the expectation values, which are
observable, can only depend on the difference � � ↵. [1 mark]

(iii) (a) The right-hand side of the relation is
*

i
2

[Ŝx , Ŝy ]
+2

=
*

i
2

i~Ŝz

+2

=
 
�~

2

4
cos ✓

!2

=
~4

16
cos2 ✓

This can take values between 0 and ~4/16 = (~/2)4. [2 marks]
(b) For any of the spin components

hŜ2
i i =

~2

4
h�2

i i =
~2

4
hIi =

~2

4

Hence, the RMS uncertainties on the left-hand side are

�S2
x = hŜ2

x i � hŜxi2 =
~2

4

h
1 � sin2 ✓ cos2 �

i

�S2
y = hŜ2

y i � hŜyi2 =
~2

4

h
1 � sin2 ✓ sin2 �

i

2011/P2.1 ANSWERS 13
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Overall phases 
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6. ANSWER:

(i) Since none of the component operators commute with each other, then any
given state can only be an eigenstate of at most one of the three. Hence, it is
not possible to measure all three components without the later measurements
disturbing the state, and hence changing the values, of the components previ-
ously measured. Hence, all three components cannot be known simultaneously.

[3 marks]

(ii) (a) The normalisation is given by

�†� = [ cos(✓/2)e�i↵ sin(✓/2)e�i� ]
 cos(✓/2)ei↵

sin(✓/2)ei�

�
= cos2(✓/2) + sin2(✓/2) = 1

and hence the state is indeed normalised. [1 mark]
(b) Evaluating the x component expectation value gives

hSxi = �†Ŝx� =
~

2
[ cos(✓/2)e�i↵ sin(✓/2)e�i� ]

 0 1
1 0

�  cos(✓/2)ei↵

sin(✓/2)ei�

�

=
~

2
[ cos(✓/2)e�i↵ sin(✓/2)e�i� ]

 sin(✓/2)ei�

cos(✓/2)ei↵

�

=
~

2
cos(✓/2) sin(✓/2)

h
ei(��↵) + e�i(��↵)

i
=
~

2
sin ✓ cos �

[6 marks]
(c) The state can be rewritten as

� = ei↵
✓ cos(✓/2)

sin(✓/2)ei(��↵)

◆
= ei↵

✓ cos(✓/2)
sin(✓/2)ei�

◆

or as

� = ei�
✓ cos(✓/2)ei(↵��)

sin(✓/2)

◆
= ei�

✓ cos(✓/2)e�i�

sin(✓/2)

◆

Hence, the absolute value of ↵ (or equivalently �) corresponds to an overall
phase, while the difference � corresponds to a relative phase between the
two terms. The overall phase of any state is not physically observable.
Hence, any arbitrary value could be added to both ↵ and � without changing
any measurable property of the system. Hence, the expectation values,
which are observable, can only depend on the difference � = � � ↵.

[1 mark]

(iii) (a) The right-hand side of the relation is
*

i
2

[Ŝx , Ŝy ]
+2

=
*

i
2

i~Ŝz

+2

=
 
�~

2

4
cos ✓

!2

=
~4

16
cos2 ✓

This can take values between 0 and ~4/16 = (~/2)4. [2 marks]

2011/P2.1 ANSWERS 13
[This question continues on the

next page . . . ]
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6. (i) The component operators for the spin angular momentum of a spin 1/2 particle
satisfy [Ŝx , Ŝy ] = i~Ŝz, and cyclic permutations. What does this imply for an
attempt to measure the three spin components simultaneously? [3 marks]

(ii) A general form for a two-component spin state is

� =
✓ cos(✓/2)ei↵

sin(✓/2)ei�

◆
.

where ✓, ↵ and � are parameters.

(a) Show that this state is normalised. [1 mark]
(b) Show that the expectation value of the spin x component is given by

hSxi =
~

2
sin ✓ cos �,

where � = � � ↵. [6 marks]
(c) The other two expectation values of the spin components are given by

hSyi =
~

2
sin ✓ sin �, hSzi =

~

2
cos ✓.

(Do not prove this.) Comment on the fact that the expectation values only
depend on the combination � � ↵ and not on these two values individually.

[1 mark]

(iii) A general form of the Heisenberg uncertainty relation is

�Q2�R2 �
*

i
2

[Q̂ , R̂]
+2

,

where �Q and �R are the RMS uncertainties in measurements of dynamical
variables Q and R, such that �Q2 = hQ2i � hQi2, and similarly for R. Consider
the case of Q̂ = Ŝx and R̂ = Ŝy .

(a) Evaluate the right-hand side of the above relation for the general state �.
What range of values can it take? [2 marks]

(b) Evaluate the left-hand side of the above relation for the general state � and
hence prove the relation is always satisfied. [5 marks]

(c) Show that when the equality holds for the relation, at least one of the ex-
pectation values hSxi and hSyi must be zero. [2 marks]

[Total 20 marks]

The spin component operators are Ŝi = ~�i/2, where the Pauli spin matrices are:

�x =
✓ 0 1

1 0

◆
, �y =

✓ 0 �i
i 0

◆
, �z =

✓ 1 0
0 �1

◆
.

Each of the Pauli spin matrices satisfies:

�2
i =
✓ 1 0

0 1

◆
= I.
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•  Observable	  operators	  must	  be	  HermiMan	  
– For	  products	  of	  two	  HermiMan	  operators,	  {Q,R}	  
and	  i[Q,R]	  are	  always	  HermiMan	  combinaMons	  

•  The	  RMS	  uncertainty	  appears	  in	  the	  HUP	  and	  
is	  given	  by	  
– ΔQ2	  =	  (ΔQ)2	  =	  <Q2>	  -‐	  <Q>2	  

•  A	  minimum	  uncertainty	  state	  saMsfies	  the	  
equality	  of	  the	  HUP	  relaMon	  
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From part i 

σ2 = I given in question  

Quantum Mechanics June 2011 ANSWERS May 18, 2012

6. ANSWER:

(i) Since none of the component operators commute with each other, then any
given state can only be an eigenstate of at most one of the three. Hence, it is
not possible to measure all three components without the later measurements
disturbing the state, and hence changing the values, of the components previ-
ously measured. Hence, all three components cannot be known simulateously.

[3 marks]

(ii) (a) The normalisation is given by

�†� = [ cos(✓/2)e�i↵ sin(✓/2)e�i� ]
 cos(✓/2)ei↵

sin(✓/2)ei�

�
= cos2(✓/2) + sin2(✓/2) = 1

and hence the state is indeed normalised. [1 mark]
(b) Evaluating the x component expectation value gives

hSxi = �†Ŝx� =
~

2
[ cos(✓/2)e�i↵ sin(✓/2)e�i� ]

 0 1
1 0

�  cos(✓/2)ei↵

sin(✓/2)ei�

�

=
~

2
[ cos(✓/2)e�i↵ sin(✓/2)e�i� ]

 sin(✓/2)ei�

cos(✓/2)ei↵

�

=
~

2
cos(✓/2) sin(✓/2)

h
ei(��↵) + e�i(��↵)

i
=
~

2
sin ✓ cos �

[6 marks]
(c) The overall phase of any state is not physically observable. Hence, any

arbitrary value could be added to both ↵ and � without changing any mea-
surable property of the system. Hence, the expectation values, which are
observable, can only depend on the difference � � ↵. [1 mark]

(iii) (a) The right-hand side of the relation is
*

i
2

[Ŝx , Ŝy ]
+2

=
*

i
2

i~Ŝz

+2

=
 
�~

2

4
cos ✓

!2

=
~4

16
cos2 ✓

This can take values between 0 and ~4/16 = (~/2)4. [2 marks]
(b) For any of the spin components

hŜ2
i i =

~2

4
h�2

i i =
~2

4
hIi =

~2

4

Hence, the RMS uncertainties on the left-hand side are

�S2
x = hŜ2

x i � hŜxi2 =
~2

4

h
1 � sin2 ✓ cos2 �

i

�S2
y = hŜ2

y i � hŜyi2 =
~2

4

h
1 � sin2 ✓ sin2 �

i
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next page . . . ]

From part ii 

From part ii 

<I>=χ+Iχ=χ+χ=1 
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RHS from 
above All squares so 

must be ≥0 

Quantum Mechanics June 2011 ANSWERS May 18, 2012

The left-hand side is therefore

�S2
x�S2

y =
~4

16

h
1 � sin2 ✓ cos2 �

i h
1 � sin2 ✓ sin2 �

i

=
~4

16

h
1 � sin2 ✓ cos2 � � sin2 ✓ sin2 � + sin4 ✓ cos2 � sin2 �

i

=
~4

16

h
1 � sin2 ✓ + sin4 ✓ cos2 � sin2 �

i

=
~4

16

h
cos2 ✓ + sin4 ✓ cos2 � sin2 �

i

=
*

i
2

[Ŝx , Ŝy ]
+2

+
~4

16
sin4✓ cos2 � sin2 �

Since the second term above cannot be negative, then the uncertainty re-
lation is always satisfied. [5 marks]

(c) For the equality to hold, the second term above must be zero. This can
occur when any of the following hold

sin ✓ = 0, cos � = 0, sin � = 0

For the first case, then both hSxi and hSyi are zero. For the second case,
hSxi is zero, while for the third case, then hSyi is zero. [2 marks]

[Total 20 marks]

2011/P2.1 ANSWERS 14 End of examination paper
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Question 6

This question done by somewhat less than half of the candidates. Most of it was not previously
seen material and some candidates found it di�cult.

Most candidates knew that the non-zero commutator in part (i) meant the values of the
spin components could not be known simultaneously, although few were able to explain this
was due to not having the same eigenstates and so the collapse during measurements forces
the wavefunction out of the eigenstate of the previously measured quantity. The normalisation
calculation in part (ii)(a) and expectation value calculation in part (ii)(b) were mainly done
correctly. However, very few candidates could answer part (ii)(c); the crucial fact that the overall
phase of any state is unobservable was rarely stated. For part (iii)(a), a majority of candidates
did not realise the commutator was already given in part (i) and spent time calculating it from
scratch. Many also did not notice that hŜ

z

i was given in part (ii)(c) and again unnecessarily spent
time calculating it explicitly. There were many arithmetic slips in this part. Most candidates
got the correct expression for the LHS in part (iii)(b) in terms of trig functions, although many
did not use the given relation �

2
i

= I and so yet again did a lot of unnecessary calculation.
However, few were able to rearrange the LHS expression in terms of the RHS and so prove the
uncertainty relation held. Many claimed it held even when previous mistakes meant what they
had written down did not satisfy the relation, and hence they lost more marks. Also, due to
arithmetical errors, many ended up comparing quantities with di↵erent dimensions, specifically
di↵erent powers of h̄, which should have indicated there was a mistake. Few candidates were
able to do part (iii)(c) correctly; usually at least one of the three trig function conditions for
equality was missed.

3



GOOD	  LUCK!	  
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