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1 Exam

This is 2 hours. There is one compulsory question (’section A’) (worth 40
marks) and then you have a choice of two of four (’section B’), (each worth
30 marks).

I regard the compulsory section as testing more basic things. The optional
questions are intended to be harder and will often cover more advanced ma-
terial or trickier calculations.

I usually structure questions so that the first parts are easier and they get
progressively harder. So you should attempt all questions, particularly the
beginning parts. If you run out of time and don’t tackle a question you will
be throwing away a lot of easy marks.

Since the section ’A’ compulsory question tests more basic things, and is
worth more marks than the optional questions, make sure you attempt all of
it. Don’t rush onto the optional questions.

Everyone who has revised and taken the course (done example sheets + at-
tended lectures) should do well. However I expect no one will get 100%.

I expect you to know important formulae, but I will give you some important
ones as in the Mock exam.
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2 Overall structure of the course

The structure of the course is;

Basic geometry:

Tensors, metrics, LIF, geodesics ( and E-L ), curvature.

• Chapter 2: Riemannian geometry

• Chapter 6: Curved spacetime and a geometric origin to gravity

• Chapter 7: Curvature

This is all really important to know well.

Example sheets: 3, 4 and 7. Also sheets 1 and 2.

Special relativity and physics in curved spacetime:

Special relativity as physics in Minkowski space-time. Laws of motion as
tensor expressions - do not depend on our choice of coordinates. Matter and
stress tensors. Perfect fluids.

• Chapter 4: The geometry of Special Relativity

• Chapter 5: Continuous matter in Minkowski space-time

This is more conceptual and where the physics is introduced; there isn’t that
much to ’know’.

Example sheets: 5
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Einstein equation and the Newtonian space-time:

• Chapter 6: Curved spacetime and a geometric origin to gravity

• Chapter 8: Einstein’s equations

Understanding how space-time curvature can give the illusion of ’Newtonian
gravity’ is crucial to understand. Understanding Einstein’s equations is cru-
cial.

Example sheets: 6 and 8.

More advanced: Cosmology and Black holes

• Chapter 9: The FLRW space-time and cosmology

• Chapter 10: The Schwarzschild space-time

These are more advanced topics. The important thing is to understand how
we compute geodesics, curvature, Einstein equations. I wouldn’t ask you to
reproduce this without help, but you must understand these conceptually.

Example sheet: 8
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3 The example sheets

I have tried to make the example sheets useful to aid in understanding what
you learn in lectures and to give you practice at manipulating tensors and
geometry. It is crucial that you do practice, as it is very hard to really un-
derstand what is going on unless you get your ’hands dirty’.

The questions are not structured like exam questions - for that, see the
mock exam. However, the types of things that I ask you to do in the rapid
feedback questions are exactly the sort of thing you might be asked in the
exam. (However in the exam the question would be broken into parts, which
will help to guide you). You can certainly expect that parts of calculations
done in the example sheets may well comprise parts of exam questions.

The ’not for rapid feedback questions’ are usually much longer. Obviously
since the exam is only 2 hours I’m not going to set anything like such long
questions. However these long questions are useful to really gain practice
with the types of calculation in GR so it is a good idea to try them. Also,
small parts of those calculations might indeed be the sort of thing I ask in
the exam.
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4 A (probably incomplete) summary of some

of the key ideas

4.1 Geometry; Chapter 2, 6 and 7

Take coordinates xi. Under a change of coordinates, xi → x′i
′

= x′i
′
(x), we

define a transformation matrix, M, with components,

M i′

j ≡
∂x′i

′
(x)

∂xj
(1)

Note that the inverse of this matrix is,

M i
j′ ≡

∂xi(x)

∂x′j′
(2)

so that,

M i′

jM
j
k′ = δi

′

k′ and M i
j′M

j′

k = δik (3)

A scalar or function transforms trivially,

f ′(x′) = f(x(x′)) (4)

A vector vi(x) has the property that it transforms as,

v′i
′
(x′) = M i′

j(x)vj(x) (5)

A covector

w′i′(x
′) = M j

i′(x)wj(x) (6)

A (q, r) tensor has q ‘up’ indices and r ‘down’ indices. Under a transform
to new coordinates xi

′
then the new components are,

T
′i′1i′2...i′q

j′1j
′
2...j

′
r
(x′) = M

i′1
i1
. . .M

i′q
iq
M j1

j′1
. . .M jr

j′r
T
i1i2...iq

j1j2...jr

∣∣∣
x(x′)

(7)
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We usually define the components of a tensor in a particular coordinate sys-
tem; eg. Minkowski metric in Minkowski coordinates xµ = (t, xi) = (t, x, y, z)
is,

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (8)

or alternatively,

gtt = −1 , gti = git = 0 , gij = δij (9)

These are not tensor equations - they are only true in the Minkowski coor-
dinates. However when we write equations such as;

Tµν = ρ vµvν (10)

we mean this as a tensor expression, holding in all coordinates, with Tµν , ρ
and vµ themselves being tensors.

The line element,

ds2 = gµνdx
µdxν (11)

tells us the infinitesimal space-time interval, ds2 between two points sepa-
rated by the infinitesimal coordinate displacement dxµ.

If ds2 > 0 the interval is space like and ds is the infinitesimal proper distance.
If ds2 < 0 then the interval is time like and the infinitesimal proper time, dτ ,
is given by dτ 2 = −ds2. An interval with ds2 = 0 is null/light-like.

Since ds2 is invariant under coordinate transformations it defines the metric
tensor, gµν . The metric is a symmetric (0, 2) tensor; gµν = gνµ. It must be
invertible, and the inverse is a (2, 0) tensor gµν so that,

gµαgαν = δµν (12)

The metric determines the space-time line element.
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For a Lorentzian metric, at every point the metric is a symmetric matrix
with 1 negative and 3 positive eigenvalues, corresponding to the time direc-
tion and 3 space directions.

LIF coordinates; For a Lorentzian metric we may always choose co-ordinates
so that at some chosen point gµν = ηµν and ∂αgµν = 0 (so that Γµαβ = 0), ie.
at some point xp,

gµν(x) = ηµν +O((x− xp)2) (13)

A curve is described parametrically, xi = xi(λ) in terms of a parameter λ.
The tangent vector is vi = dxi(λ)/dλ. Recall this correctly transforms as a
vector (due to the chain rule).

Timelike curves (the trajectories of massive particles) have vµvνgµν < 0.
For spacelike curves vµvνgµν > 0 and for null (trajectories of light rays)
vµvνgµν = 0.

We measure the proper distance s along a space like curve by integrating the
infinitesimal proper distance along each dλ as,

s =

∫
dλ
√
gijvivj (14)

We measure the proper time τ along a time like curve by integrating the
infinitesimal proper time along each dλ as,

τ =

∫
dλ
√
−gijvivj (15)
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The metric raises/lowers indices;

T
i1...in−1 in+1...iq

a j1...jr
= ga inT

i1...iq
j1...jr

(16)

Under an infinitesimal active shift of our coordinates (’infinitessimal diffeo-
morphism’); xi → x′i = xi − εvi, we have,

f(x)→ f ′(x) = f(x) + εLie(v, f) , Lie(v, f) ≡ vi∂if

wi(x)→ w′i(x) = wi(x) + ε(Lie(v, w))i , (Lie(v, w))j ≡ vi∂iw
j − wi∂ivj

In general a tensor shifts by its Lie derivative with respect to v for an in-
finitesimal diffeomorphism.

Given a tensor (q, r) tensor, ω, we say that if for some vector field vi we have
Lie(v, ω) = 0 then the diffeomorphism generated by v is a symmetry of the
tensor ω.

For the metric;

Lie(v, g)ij =
(
vk∂kgij + gik∂jv

k + gjk∂iv
k
)

(17)

[Note that for the metric (and only the metric) this Lie derivative can actu-
ally be written in terms of the covariant derivative; ∇(ivj) = 0.]

For the Lie derivative of a general tensor see the notes.

Example. Consider a vector field vi and a tensor T i1...j1.... Take coordinates
so that the vector field vi = (1, 0, . . . , 0). Then if v is a symmetry of T then,

Lie(v, T )i1... j1... = vm
∂

∂xm
T i1...j1... = 0 (18)

so that the components T i1...j1... do not depend on the coordinate x1.

A symmetry of the metric is called an isometry. If for some vector vi we have
Lie(v, g) = 0 (so equivalently ∇(ivj) = 0) we say vi generates an isometry
of the metric. In fact then vi is called a ‘Killing’ vector. Ex. Schwarzschild
space-time - t is Killing vector.
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The Christoffel symbol (not a tensor) is defined as;

Γcab(x) ≡ 1

2
gcd
(
∂gdb
∂xa

+
∂gda
∂xb
− ∂gab
∂xd

)
(19)

It has symmetry;

Γcab = Γcba (20)

It determines the first partial derivatives of the metric;

∂gab
∂xc

= gmaΓ
m
bc + gmbΓ

m
ac (21)

We may always choose an affine parameterization for a curve xµ(λ). Then
the tangent vµ = dxµ/dλ has constant length,

vµvνgµν = constant (22)

If timelike, then may choose affine parameter τ so that vµvνgµν = −1. Then
τ is just proper time along curve.If space like, we can choose proper distance
s as parameter, and vµvνgµν = +1.

Recall a spacelike/timelike geodesic is a curve between 2 space-time points
with extremal proper length/time. In affine parameterization requiring δs or
δτ = 0 is equivalent to requiring,

L =

∫
dλL =

∫
dλ gij

dxi

dλ

dxj

dλ
(23)

is extremized. (ie. we can forget the ’square root’).

The Euler-Lagrange equations;

d

dλ

(
∂L

∂(dx
a

dλ
)

)
=

∂L
∂xa

(24)

then give the geodesic condition (in affine parameterization);

d2xj

dλ2
+ Γj ik

dxi

dλ

dxk

dλ
= 0 (25)
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Remember that in practice; eg. for FLRW and Schwarzschild it is easier to
compute the geodesics by varying this action, rather than using the geodesic
equation.

Also recall that you can simplify things by remembering that L =constant.
You can use this to replace one of the E-L equations.

Covariant derivative of a (q, r) tensor T i1...iq j1...jr ;

∇aT
i1...iq

j1...jr ≡ ∂aT
i1...iq

j1...jr

+Γi1abT
bi2...iq

j1...jr + Γi2abT
i1bi3...iq

j1...jr + . . .

−Γbaj1T
i1...iq

bj2...jr − Γbaj2T
i1...iq

j1bj3...jr + . . . (26)

This generalises partial derivative - it equals it in LIF - and gives a well
defined tensor. Properties;

∇agbc = ∇ag
bc = 0 (27)

Defines notion of parallel transport. We say a vector wµ is parallel trans-
ported along a curve x(λ) with tangent vµ if; vµ∇µw

ν |x(λ) = 0.

Geodesic (in affine parameterization) is curve which transports its tangent
along itself;

vi∇iv
j
∣∣
x(λ)

= 0 (28)

Isometries give conservation laws for geodesic motion; Consider inertial par-
ticle, proper time τ , tangent vµ = dxµ/dτ , hence 4-momentum pµ = mvµ.
Consider Killing vector kµ. Then recall one can show (using geodesic eqn
and Killing vector equation);

d

dτ
(pµkµ) = 0 (29)

so pµkµ is conserved. If kµ timelike then −pµkµ is the energy of the particle
measured by observers following curves with tangent kµ.

11



Recall for a function, [∇α,∇β]f = 0

However, for a convector, [∇α,∇β]vµ = R ν
αβµ vν where R µ

αβν is the Riemann
(1, 3) tensor field, which is;

R δ
αβµ = ∂βΓδ αµ − ∂αΓδ βµ + Γν αµΓδ βν − Γν βµΓδ αν (30)

Controls curvature - deviation away from being Mink;

gµν(x) = ηµν −
1

3
Rµανβ|x=0 x

αxβ +O(x3) (31)

Enjoys symmetries;

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ (32)

Ricci tensor, scalar;

Rµν = R α
µαν , R = R µ

µ (33)

and Einstein tensor;

Gµν ≡ Rµν −
1

2
gµνR (34)

The Bianchi identity;

∇[µR
ρ

να]β = 0 (35)

Two contractions give;

∇µG
µν = ∇µR

µν − 1

2
∇νR = 0 (36)
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4.2 Chapters 3, 4 and 5: Special Relativity and matter

Special Relativity is physics in Minkowski space-time.

In Minkowski coordinates; xµ = (t, x, y, z), the Minkowski metrc is;

gµν = ηµν ≡


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (37)

The Poincare transformations;

x′µ
′
= aµ

′
+ bµ

′

µx
µ (38)

generate all the isometries of Minkowski space-time. Geodesics are straight
lines - inertial observers follow geodesics.

Physical laws must be independent of our choice of coordinates; hence they
must be given by tensor expressions.

Given a law in Minkowski coordinates, obtain general law by writing vari-
ables as tensors and taking ∂µ → ∇µ.

Eg. EM;

∇µF
µν = jν , ∇[νFαβ] = 0 (39)

where Fµν is an antisymmetric (0, 2) tensor field, and jµ is a vector field
which obeys, ∇µj

µ = 0.

Newton’s laws; for a massive particle with proper time τ following curve
tangent vµ = dxµ/dτ , and hence with 4-momentum pµ = mvµ for rest mass
m;

aµ = vα∇αv
µ , fµ = maµ (40)

In Minkowski coordinates this is equivalent to the more familiar aµ = d2xµ/dτ 2

or alternatively fµ = dpµ/dτ (neither of which are tensor expressions, but
work only in Minkowski coordinates).
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Since any curved metric is Minkowski locally (ie. can go to LIF at some
point), on scales smaller than the curvature SR is always recovered in GR.

Any physical law in Minkowski space-time written as a tensor expression
simply generalise to a general curved space-time.

Ex. In curved space-time again aµ = vα∇αv
µ for a particle. A non-accelerating

particle therefore follows a geodesic.

Continuous matter is described by a stress tensor; Tµν is a (0, 2) tensor that
due to local energy-momentum and angular momentum conservation is sym-
metric Tµν = Tνµ and conserved; ∇µTµν = 0.

In the instantaneous rest frame of the matter at some point in space-time
(ie. its LIF at that point, chosen so that the total 3-momentum there is zero)
then;

• T tt = rest mass density of the matter

• T ti = 0

• T ij = the usual stress tensor ie. momentum flux in direction of xi

through surface normal to xj.

A perfect fluid is described by local energy density ρ, pressure P and 4-
velocity vµ where vµvµ = −1 and an ’equation of state’ relating P to ρ e.g.;

• Cold matter matter (‘Dust’) fluid has no pressure, so P = 0.

• Hot relativistic matter and radiation has pressure, so P = 1
3
ρ.

Then its stress tensor is,

T µν = (ρ+ P )uµuν + Pηµν (41)

Perfect fluids are very simple - the fluid equations of motion are just equiv-
alent to stress-energy conservation, ∇µTµν = 0.
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4.3 Chapters 6 and 8: A geometric origin to gravity
and the Einstein equation

Motion in a curved space-time can appear to observers who think space-time
is flat as a ’fictitious force’ - the ’force of gravity’. This is quite analogous
to the ’fictitious centrifugal force’ when observers forget that if they are in a
rotating frame they are accelerating.

The Einstein equation governs how the matter deforms the space-time. It
must be a tensor equation, and must involve the curvature as we wish mat-
ter to curve the geometry away from uncurved Minkowski. Stress energy
conservation plus the contracted Bianchi then implies the equation should
be;

Gµν = κTµν (42)

Getting the Newtonian limit correct determines the constant κ as;

Gµν = 8πGN Tµν (43)

(in our units c = 1).

Now we review the Newtonian limit, or Newtonian space-time. Consider
Minkowski space-time, in Minkowski coordinates xµ = (t, x, y, z), so gµν =
ηµν , and deform it a little in a specific way;

ds2 = gµνdx
µdxν , with gµν = ηµν − 2εΦ δµν +O(ε2) (44)

where |ε| � 1 controls this small deformation. The quantity εΦ we find to
be the usual Newtonian potential.

We calculate quantities to lowest order in ε to obtain the Newtonian limit.

Suppose we have a dust fluid in the space-time (so P = 0) which is very
slowly moving so that vt = 1 +O(ε) and vi = O(ε) so we take,

Tµν = ρ vµvν (45)

and we will require the density is weak so that ρ ∼ O(ε).
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The Einstein equations can be consistently solved at leading order, and they
determine that εΦ is simply the Newtonian potential of Newton’s gravity, so,

δij∂i∂jεΦ = ∇2εΦ = 4πGNρ (46)

The path of a slow moving timelike geodesic, proper time τ , obeys,

d2xi

dτ 2
= −∂iεΦ (47)

giving the usual Newton law of gravity.

The proper time of the particle obeys,

dt

dτ
= 1 + ε

(
1

2
δijv

ivj − Φ

)
+ . . . (48)

ie. the particle experiences the usual Lorentz time dilation relative to ob-
servers at rest (ie. whose proper time is the coordinate time t, so that they
must be at constant coordinate location xi =const), but also a gravitational
time dilation effect.

This gives the ‘Gravity redshift’ effect. A static emitted and observer (at
constant xi(e) and xi(o)) observers have frequencies of their signals emitted
and observed related as;

ω(o)

ω(e)

' 1 + ε
Φ(x(e))− Φ(x(o))

c2
(49)

Also light bending...

4.4 Chapter 10: FLRW and cosmology

For flat spatial geometry, the FLRW metric is;

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
(50)

This is homogeneous and isotropic - all spatial points are the same as any
other, and all spatial directions are the same.
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Static observers follow curves xi =const. Their proper time is t.

Solves Einstein equations (which determine scale factor a) if matter is ho-
mogeneous and isotropic (ie. stress tensor shares symmetries of metric).

Expansion is measured by rate of change of scale factor; Hubble ’constant’
(which is not constant),

H ≡ 1

a

da

dt
(51)

Also may use conformal time co-ordinate;

ds2 = a2(τ)
(
−dτ 2 + dx2 + dy2 + dz2

)
= a2(τ)ηµνdx

µdxν (52)

Then null geodesics are straight lines in the coordinates τ, x, y, z, at 45o.
Related to time t as,

dt = a(τ)dτ , so t =

∫
a(τ)dτ (53)

Cosmological redshift; A static emitter at time te sends a light pulse out, and
then another shortly after at time te + ∆te. These are observed by a static
observer at latter times to and to + ∆to respectively. These are related as;

∆to
∆te

=
a(to)

a(te)
(54)

Hence in an expanding universe, light observed from far objects appears
redshifted (ie. lower frequency than its frequency measured when where is
originated from).

4.5 Chapter 11: Schwarzschild

Black hole metric;

ds2 = −
(

1− RS

r

)
dt2 +

(
1− RS

r

)−1
dr2 + r2dΩ2 (55)
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where dΩ2 = dθ2 + sin θ2dφ2 is the line element on the round 2-sphere. We
will work with these Schwarschild coordinates xµ = (t, r, θ, φ)

This solves the vacuum (Tµν = 0) Einstein equations (for r > 0) ie. Rµν = 0.
It represents the exterior to a spherically symmetric distribution of matter
(which in fact must also be static - Birkhoff’s theorem). Alternatively the
end state of gravitational collapse to a black hole.

r = RS is the horizon of the black hole; RS is the ’Schwarzschild radius’.
Matter or light entering the horizon may never leave and will be crushed at
the singularity at r = 0 inevitably a finite time after entering.

Metric looks singular at horizon, but only a ’coordinate singularity’. Using
better coordinates (eg. Eddington-Finklestein) the horizon is perfectly reg-
ular and locally looks no different to any other place.

In order to deduce, say timelike, geodesics it is best to parameterize using
affine parameter proper time τ so,

xµ(τ) = (T (τ), R(τ),Θ(τ),Φ(τ)) (56)

so the tangent is given by,

dxµ(τ)

dτ
=
(
Ṫ (τ), Ṙ(τ), Θ̇(τ), Φ̇(τ)

)
(57)

where Ṫ = dT/dτ and similarly for Ṙ, Θ̇, Φ̇.

Then use Euler-Lagrange to find extrema of the Lagrangian;

L ≡ gµν
dxµ(τ)

dτ

dxν(τ)

dτ
= −

(
1− RS

R

)
Ṫ 2 +

(
1− RS

R

)−1
Ṙ2 +R2

(
Θ̇2 + sin2 ΘΦ̇2

)
Recall that L = −1; use this rather than one of the Euler-Lagrange equations
as it is simpler to work with and equivalent in the end.

Do not try to solve the geodesic equation; d2xj

dλ2
+ Γj ik

dxi

dλ
dxk

dλ
= 0. In practice

it is always better to compute geodesics in a particular given metric by this
variational approach.
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