
Emmy Noether 
 
Professor Einstein Writes in Appreciation of a Fellow-Mathematician. 
To the Editor of The New York Times:  
 
The efforts of most human-beings are consumed in the struggle for their daily bread, but most of those 
who are, either through fortune or some special gift, relieved of this struggle are largely absorbed in 
further improving their worldly lot. Beneath the effort directed toward the accumulation of worldly 
goods lies all too frequently the illusion that this is the most substantial and desirable end to be 
achieved; but there is, fortunately, a minority composed of those who recognize early in their lives that 
the most beautiful and satisfying experiences open to humankind are not derived from the outside, but 
are bound up with the development of the individual's own feeling, thinking and acting. The genuine 
artists, investigators and thinkers have always been persons of this kind. However inconspicuously the 
life of these individuals runs its course, none the less the fruits of their endeavors are the most valuable 
contributions which one generation can make to its successors.  
 
Within the past few days a distinguished mathematician, Professor Emmy Noether, formerly connected 
with the University of Göttingen and for the past two years at Bryn Mawr College, died in her fifty-
third year. In the judgment of the most competent living mathematicians, Fräulein Noether was the 
most significant creative mathematical genius thus far produced since the higher education of women 
began. In the realm of algebra, in which the most gifted mathematicians have been busy for centuries, 
she discovered methods which have proved of enormous importance in the development of the present-
day younger generation of mathematicians. Pure mathematics is, in its way, the poetry of logical ideas. 
One seeks the most general ideas of operation which will bring together in simple, logical and unified 
form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual 
formulas are discovered necessary for the deeper penetration into the laws of nature.  
 
Born in a Jewish family distinguished for the love of learning, Emmy Noether, who, in spite of the 
efforts of the great Göttingen mathematician, Hilbert, never reached the academic standing due her in 
her own country, none the less surrounded herself with a group of students and investigators at 
Göttingen, who have already become distinguished as teachers and investigators. Her unselfish, 
significant work over a period of many years was rewarded by the new rulers of Germany with a 
dismissal, which cost her the means of maintaining her simple life and the opportunity to carry on her 
mathematical studies. Farsighted friends of science in this country were fortunately able to make such 
arrangements at Bryn Mawr College and at Princeton that she found in America up to the day of her 
death not only colleagues who esteemed her friendship but grateful pupils whose enthusiasm made her 
last years the happiest and perhaps the most fruitful of her entire career.  
 
ALBERT EINSTEIN.  
Princeton University, May 1, 1935.  
[New York Times May 5, 1935] 
	  



Quantum Field Theory

Notes on the Delta Function and Related Issues

In quantum field theory we often make use of the Dirac δ-function δ(x) and the θ-function θ(x)

(also known as the Heaviside function, or step function). These are defined as follows.

The Delta Function

The δ-function, δ(x), is zero for all values of x except at x = 0, where it becomes infinite in

such a way that ∫ ∞
−∞

dx δ(x) = 1

It is therefore a single infinite spike at x = 0. We also have the important result,∫ ∞
−∞

dx δ(x− x0)f(x) = f(x0)

for any function f(x).

One way of defining it more precisely is to consider the series of Gaussians

fa(x) =
1

a
√
π

exp

(
−x

2

a2

)
which clearly satisfy ∫ ∞

−∞
dx fa(x) = 1

for all values of a. The functions fa(x) are peaked at x = 0 dropping off very rapidly as |x|
becomes large. If we let a become small, the Gaussian becomes progressively more peaked at

x = 0, but in such a way that the total area underneath it remains 1. The δ-function is then

defined by

δ(x) = lim
a→0

fa(x)

We are also interested in the Fourier transform of the δ-function. The Fourier transform

f̃(k) of a function f(x) is defined by

f̃(k) =

∫ ∞
−∞

dx e−ikx f(x)

and its inverse is defined by

f(x) =
1

2π

∫ ∞
−∞

dk eikxf̃(k)

(We can equally use eikx in the definition of the Fourier transform as long as we use e−ikx in

the definition of the inverse. Similarly the factor of 2π may be moved around. Also, often the

tilde is dropped.)

The Fourier transform of the δ-function therefore is

δ̃(k) =

∫ ∞
−∞

dx e−ikxδ(x) = 1
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so the inverse relation is the important relation

δ(x) =
1

2π

∫ ∞
−∞

dk eikx

This relation also allows us to prove the simple property

δ(cx) =
1

|c|
δ(x)

by simply scaling k in the Fourier transform. In particular δ(−x) = δ(x).

All of this easily generalizes to higher dimensions. We have, for example, in three dimensions

δ(3)(x) =
1

(2π)3

∫
d3k eik·x

The δ-function strictly speaking only has meaning when it is sitting inside an integral. It is

practically useful to remember this when interpreting combinations like xδ(x). This is obviously

only non-zero at x = 0 but then it has the form 0×∞. To see how to interpret this, we consider

the quantity ∫
dx xδ(x) f(x)

This is clearly zero for arbitrary f(x). So we interpret xδ(x) as zero.

One can also prove that

δ(x2 − a2) =
1

2|a|
[δ(x+ a) + δ(x− a)]

or more generally

δ(g(x)) = Σj
δ(x− xj)
|g′(xj)|

where xj are the roots of g(x) and we have assumed that they are all single roots.

The Theta Function (a.k.a. the Heaviside or step function)

The θ-function is a discontinuous fucntion defined by

θ(x) =

1 if x > 0

0 if x < 0

Its value at x = 0 may be taken to be 1/2 but it doesn’t really affect much and it can also be

taken to be defined as other values.

The θ-function has zero slope everywhere except at x = 0 where it appears to be infinitely

steep. This suggests that the derivative of θ(x) is in fact δ(x). We can prove this more precisely

as follows. Consider the integral ∫ x

−∞
dy δ(y)

From the properties of the δ-function, this is clearly 0 if x < 0 and 1 if x > 0. That is,∫ x

−∞
dy δ(y) = θ(x)
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So if we differentiate with respect to x we get

δ(x) = θ′(x)

Notice also that
d

dx
(θ(−x)) = −δ(x)

An Example

These properties are illustrated in the following example. Consider the differential equation

g̈ + ω2g = −iδ(t)

This is the equation of a harmonic oscillator that receives a kick at t = 0. Clearly for t > 0

or t < 0, the solutions are linear combinations of e±iωt. Then one possible solution with the

δ-function source is

g(t) = N
[
θ(t)e−iωt + θ(−t)eiωt

]
where N is a normalization factor, to be fixed. To see that this is a solution, we differentiate,

using the known properties of θ(t). We have

ġ = −iωN
[
θ(t)e−iωt − θ(−t)eiωt

]
+Nδ(t)

[
e−iωt − eiωt

]
The second term in brackets is δ(t) times a function which vanishes at t = 0, so

ġ = −iωN
[
θ(t)e−iωt − θ(−t)eiωt

]
Differentiating a second time we get

g̈ = −ω2N
[
θ(t)e−iωt + θ(−t)eiωt

]
− iωNδ(t)

[
e−iωt + eiωt

]
In the second bracket, the δ(t) forces us to set t = 0 in the exponentials, and we get

g̈ = −ω2g − 2iωNδ(t)

We thus obtain a solution to the differential equation as long as we choose

N =
1

2ω

Later in the course, you can consider this example as a simplified and alternative proof that

the Feynman propagator DF obeys the equation

(∂2 +m2)DF (x) = −iδ(4)(x)
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Further comments on u’s and v’s

In constructing the general plane wave solutions to the Dirac equation we need spinors u(p)

and v(p) that satisfy

(p/−m)u(p) = 0, (p/+m)v(p) = 0,

Here we complement the discussion given in the lectures and the problem sheets concerning the

solutions to these equations. We will focus on u(p), noting that there is an analogous discussion

for v(p).

We saw that in the rest frame with pµ = (m,0) we have

u(m,0) =
√
m

(
ξ

ξ

)
where ξ is a two component spinor and the factor of

√
m is for convenience. We obtain the

general u(p) by considering a boost in a direction p̂ (with p̂2 = 1), that takes the rest frame

four-momentum (m,0) to (p0,p) with

p0 = m cosh η, |p| = m sinh η

This is a Lorentz transformation with ω0i = ηp̂i and ωij = 0. Thus the boost takes the spinor

u(m,0) to u(p) with

u(p) = exp[− i
2
ωµνS

µν ]u(m,0)

= exp[−iω0iS
0i]u(m,0)

= exp[−η
2

(
p̂ · σ 0

0 −p̂ · σ

)
]
√
m

(
ξ

ξ

)

=

(√
m(cosh η

2 − sinh η
2 p̂ · σ)ξ

√
m(cosh η

2 + sinh η
2 p̂ · σ)ξ

)
where we used (p̂ · σ)2 = 1. Observing that

cosh
η

2
=

1√
2m

(p0 +m)1/2, sinh
η

2
=

1√
2m

(p0 −m)1/2

we can obtain the general expression

u(p) =

 1√
2(p0+m))

(p0 +m− p · σ)ξ

1√
2(p0+m))

(p0 +m+ p · σ)ξ

 . (1)

It is straightforward to directly check that this expression for u(p) satisfies (p/ − m)u(p) = 0

(which was guaranteed from the construction). One can also check that if we set p = (0, 0, p3)

then we obtain

u(p) =


(√

p0 − p3 0

0
√
p0 + p3

)
ξ(√

p0 + p3 0

0
√
p0 − p3

)
ξ
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as we had in the lectures.

Next we observe that[
1√

2(p0 +m))
(p0 +m− p · σ)

]2
= p0 − p · σ = p · σ[

1√
2(p0 +m))

(p0 +m+ p · σ)

]2
= p0 + p · σ = p · σ̄

which allows us to write the equivalent general expression

u(p) =

(√
p · σξ
√
p · σ̄ξ

)
(2)

as we also had in the lectures.

Another perspective on the compact expressions given in (2) is the following. Observe that

p · σ is an Hermitian matrix with positive eigenvalues given by p0 ± |p|. Thus if we diagonalise

p · σ using a non-singular matrix M i.e. p · σ = MDiag(p0 + |p|, p0 − |p|)M−1, then we can

write

√
p · σ = MDiag(

√
p0 + |p|,

√
p0 − |p|)M−1

where we note that, by definition, the square root notation means take the positive roots of the

eigenvalues. It is straightforward to check that this is consistent:

[
√
p · σ]2 = MDiag(

√
p0 + |p|,

√
p0 − |p|)M−1MDiag(

√
p0 + |p|,

√
p0 − |p|)M−1

= MDiag(
√
p0 + |p|,

√
p0 − |p|)Diag(

√
p0 + |p|,

√
p0 − |p|)M−1

= MDiag(p0 + |p|, p0 − |p|)M−1

= p · σ
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