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Chapter 1

Introduction to Particles

The Standard Model incorporates all the fundamental particles including the recently discovered
Higgs particle. However, the Standard Model is elaborate and involves many parameters. Possible
next steps to make sense of these include:

(a) Beyond-the-Standard-Model physics (including more particles, SUSY, or dark matter), and

(b) Simplification and unification (string theory or competitors).
Experimentally one finds many types of particle in nature, including;:

e electrons e gluons

e photons .
e neutrinos

e protons / neutrons

e pions e gauge particles (W¥, Z)
e quarks e Higgs bosons

The Standard Model makes detailed sense of these but is not fully understood. Experimentally,

the most important properties of the observed particles are mass and spin. These are related to
the geometry of Minkowski space. Only massless particles move at the speed of light.

The simplest theory of particles is perturbative quantum field theory (pQFT). In pQFT, there is
one particle per field (one particle spin state per field component). The theory is approximately
linear, but this can fail when interactions between the fields are strong. Then nonlinearity between
fields becomes crucial. Particles associated with a field may appear as composites or not at all.
Solitons are particle-like nonlinear field structures.

1.1 Standard Model Fields

1.1.1 Fermions: Spin 1/2 (“matter”)

The fermions occur in three families which are similar apart from their masses

() () () oo
() () () e
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Part IIT Symmetries, Fields and Particles Section 1.3

Note that all fermions have anti-particles. This was predicted by Dirac.

1.1.2 Bosons: Spin 0 or 1
g (gluon), v (photon), W*, Z, H (Higgs)

spin 1 Spin 0

Quarks interact through gluons; leptons do not.

1.2 Observed Particles (of “long life”)

e Leptons: e,v, (stable)
e Mesons: ¢q, for example 7t = ud, 7~ = ud
e Baryons: gqq, for example p = uud (stable)

e Gauge particles: v (stable), W*, Z, H, g (not seen as tracks, even in glueballs)

Remark. The strongly interacting particles are called hadrons: {mesons} | J{baryons} = {hadrons}

1.3 Further Remarks on Particles

The pairs (Vee) and (%) lead to an SU(2) structure. SU(2) is a three-dimensional Lie group of 2 x 2
matrices which helps explain the W*, Z particles. The qqq baryons lead to an SU(3) structure.
SU(3) is an eight-dimensional Lie group of 3 x 3 matrices, which explains the eight species of gluons.
The Standard Model has the gauge group U(1) x SU(2) x SU(3) which extends the U(1) gauge
symmetry of electromagnetism with its one photon (gauge boson).

1.3.1 Mass of gauge bosons

Naively, one expects the gauge bosons in QFT to be massless. This is evaded by:
(a) Confinement for gluons
(b) Higgs mechanism for W*, Z

The Higgs mechanism breaks the SU(2) symmetry. The U(1) x SU(3) symmetry remains unbroken.

1.3.2 The Poincaré Symmetry

The Poincaré symmetry combines translations and Lorentz transformations. The Poincaré group
is a ten-dimensional Lie group (think geometrically: 3 rotations, 3 boosts, and 4 translations).
The Poincaré symmetry explains the mass, spin, and particle-antiparticle dichotomy of particles.
When Poincaré symmetry is broken, particles lose definite values for mass and spin. Gravity bends
spacetime, changing the Minkowski metric. Thus we expect breaking of the Poincaré symmetry
when gravity becomes significant.
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1.3.3 Approximate Symmetries

Approzimate symmetries simplify particle classification and properties. The most important exam-
ple is that (Z) have similar masses. Thus p = uud and n = udd have similar masses and interactions
(my, =938 MeV, my, = 940 MeV). This gives rise to an approximate SU (2) symmetry called isospin.
There is also a less accurate SU(3) flavour symmetry involving the u, d and s quarks.

1.4 Particle Models

Perturbative QFT: quantize linear waves
Point particles: naive quark model, non-relativistic
Composites: baryons (¢qq), nuclei (p,n), atoms (nuclei and e’s)

Exact field theory: classical localized field structures become solitons / particles after quan-
tization

(e) String theory models of particles
We remark that multi-particle processes are hard to calculate in all models. At the LHC, pp —

hundreds of particles, mostly hadrons. Sometimes, one observes a few outgoing jets. These are the
experimental signatures of quarks and gluons.

1.5 Forces and Processes

1.5.1 Strong Nuclear Force (quarks, gluons, SU(3) gauge fields)

A 4 Q

q Q

Figure 1.1: Quark Scattering, the process at the heart of hadron scattering

q Q

Figure 1.2: Particle Production (perhaps pn — pnz?)
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Part IIT Symmetries, Fields and Particles Section 1.5

Strong forces are the same for all quarks (“flavour blind”). However, the quark masses differ:
My ~ 2 —5 MeV, my ~ 175 GeV. Note: 1 GeV = 10°> MeV ~ proton mass. 1 TeV = 10° GeV ~
LHC energies.

Strong interactions do not change quark flavour. For each quark flavour, the net number of quarks,
i.e. (# quarks — # antiquarks) is conserved. Thus Ny, Ng, N¢, Ng, Ny, Ny are all independently
conserved in strong interactions. The conserved total number of quarks Ny, = Ny, + Ng+ N.+ Ng+
N;¢ + Ny is always a multiple of three in any physical state. We write N, = 3B, where B is the
baryon number, which is evidently also conserved.

1.5.2 Electroweak Forces

Electroweak forces involve the photon v and the vector bosons W+, Z and may or may not change
quark flavour. However, the net number of quarks N,, and hence baryon number B, remains con-
served. The lepton number L is also conserved (all leptons have L = 1, antileptons have L = —1).

{r {
q
e e
Y
>JA.< ,
e e (& e e

Figure 1.3: Some electroweak interactions with their Feynman diagrams

< T

ol

The photon only couples to electrically charged particles. Z couples to neutrinos too.

U d u e Ve

udd
Figure 1.4: Neutron decay

Neutron decay is mediated by quark decay: n — per.. This is a flavour-changing electroweak
process, involving a W-boson.

Heavy meson decay often involves a transition between families (whose strength is controlled by
the CKM matrix).
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u b
Figure 1.5: Heavy meson decay

Y € Ve

1

Figure 1.6: Muon decay

Heavy quarks are produced in QQ pairs in strong interactions. They separate and decay weakly,
leaving short tracks. The background Higgs field couplings determine the masses of all other par-
ticles, but do not appear in Feynman scattering diagrams. The Higgs particle H shows up in
diagrams like:

Figure 1.7: An interaction involving the Higgs

The strength of the Higgs particle couplings are also proportional to the masses of other particles,
i.e., Z and Q in the case above. H couples preferentially to heavy particles.

Weak interactions are “weak” and hence slow only if the energy available is < My, Mz ~ 80/90

GeV, as in neutron or muon decay. Strong interactions are “fast,” occurring on time scales ~ 107245
(the time for light to cross a proton).
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Chapter 2

Symmetry

Definition 1. A group is a set G = {g1 = I, g2, 93, ...} with
(i) a composition rule (binary operation) g x ¢’ € G which we usually denote g¢’,

(ii) a unique identity I € G such that Ig = gI = g for all g € G,

! 1

(iii) associativity: (g9')g9” = g9(¢'g") = gg’g” for all g,¢', ¢" € G, and

1

(iv) unique inverse: Vg € G,3!g~! such that gg=' = g7 1g = I.

If the binary operation is commutative, we say G is abelian.

2.1 Symmetry

Many physical and mathematical objects or physical theories possess symmetry. A symmetry is a
transformation that leaves the thing unchanged. The set of all possible symmetries forms a group:

(i) Symmetries can be composed. We usually interpret gg’ as “act with ¢’ first and then act with
g77 .
(ii) Doing nothing is a symmetry, the identity 1.
(iii) gg’'g” does not need brackets because it means: act with ¢” then ¢’ then g.
1

(iv) A symmetry transformation g can be reversed, which gives the inverse g7 .
itself a symmetry.

The inverse is

The conclusion is that group theory is the mathematical framework of symmetry. Every group is
the symmetry of something, at least itself. A natural question is then, “Why does symmetry occur
in nature?” As with most of the “big” questions, there are no easy answers. However, some partial
answers are given by the following arguments:

(1) Solutions of variational problems generally exhibit a high degree of symmetry. For example,
circles maximize area. As another example, Minkowski space is a stable solution of the Ein-
stein equations (Einstein-Hilbert action) and has a high symmetry compared with a random
spacetime. The symmetries of Minkowski space - known as the Poincaré group - are important
and discussed in some detail later on.

2) Physics often uses more mathematical variables than are really present in nature, leading to
y Yy p g
different descriptions of the same phenomenon. Transformations between them are known as
gauge symmetries. Gauge symmetries are exact. For example:

10
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(a) Coordinate transformations.

(b) Gauge transformations in electrodynamics, where the fields E,E are physical while the
potential A* = (¢, A') is partly non-physical. The potential can be freely gauge transformed
without altering the physics.

Remark: Gauge transformations were named by Weyl, who thought physics could not
depend on a “ruler.” Although this idea ultimately turned out to be wrong, as there are

fundamental length scales, the name remains.
(c) Non-physical changes to the phase of a wavefunction in quantum mechanics.
(3) Approximate symmetries arise by ignoring part of the physics or by making simplifying as-
sumptions. For example, one ignores the difference between the masses of the u and d quarks,

and also ignores the effects of electric charge, to get the SU(2) isospin symmetry of hadron
physics.

Symmetry simplifies analysis; hence it’s popular with theorists. Symmetry leads to conservation
laws (e.g. energy, angular momentum, electric charge), by Noether’s theorem.
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Chapter 3

Lie Groups and Lie Algebras

Lie groups have infinitely many elements. The elements depend continuously on a number of
(real) parameters, called the dimension of the group, which will usually be finite here. The group
operations (products and inverses) depend continuously (and smoothly) on the parameters.

Definition 2. A Lie group G is a smooth manifold which is also a group with smooth group
operations.

Definition 3. The dimension of G, denoted dim G, is the dimension of the underlying manifold.

The coordinates of g¢’ depend smoothly on the coordinates of g and ¢’. The inverse ¢! also
depends smoothly on the coordinates of g.

Examples:

(i) (R™,4). R™ is a manifold of dimension n. @’ = ¥+ &’ is a smooth function of ¥ and Z’. The
inverse #~! = —7 is also smooth.

(i) St ={0:0< 0 < 2r} with § = 0, § = 27 identified (to skirt the issue that some manifolds
require more than one chart). Here the group operation is addition mod 27. Equivalently,
St = {z € C: |z| = 1}, with multiplication in C giving the group operation. The equivalence
between these two portrayals can be seen via z = expif. S has dimension 1.

3.1 Subgroups of G

Definition 4. A subgroup H C G is a subset of G closed under the group operation inherited from
G. We sometimes write H < G.

Note that a subgroup can be discrete, e.g., {z = 1,—1} C S!, but discrete subgroups are not Lie
subgroups. If H is a continuous subgroup and a smooth submanifold of G, then H is called a Lie
subgroup. A Lie subgroup usually has a smaller dimension than the parent group.

3.2 Matrix Lie Groups

Lie groups of square matrices abound. These are called linear Lie groups, as the matrices act linearly
on vectors in a vector space. The group operation in matrix Lie groups is always multiplication
My * My = My M,. Although addition is a sensible matrix operation, it is not the group operation.
The identity in a matrix Lie group is always the unit matrix, and the inverse of an element M is
the inverse matrix M ~!. Matrix multiplication is automatically associative, provided the matrix

12
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elements multiply associatively (for example, when they belong to a field). We will restrict our
study to matrices over R or C. The principal example of a matrix Lie group is given by the following
definition:

Definition 5. The General Linear group is:
GL(n) = {n x n invertible matrices}.

GL(n,R) with entries over R has real dimension n?. GL(n,C) with entries over C has real dimension
2n? and complex dimension n?. The identity in GL(n) is the unit matrix I = I,,.

The condition of invertibility is equivalent to the condition det M # 0 (for R and C). This is an
“open condition,” so dim GL(n) is not reduced from the dimension of the space of all n x n matrices.

(Put another way, the matrices with det = 0 are a subset of measure zero within the space of all
matrices). GL(n,R) has a subgroup GLT (n,R) = {M real,det M > 0}.

3.2.1 Important Subgroups of GL(n)

(1) SL(n) = {M : det M = 1}, the special linear group. Note that the group composition closes,
since determinants of matrices multiply: det MMy = det M7 det Mo.

dim SL(n,R) = n? — 1 (real dimension)

dim SL(n,C) = 2n% — 2 (real dimension), or n® — 1 (complex dimension)

Note that the complex dimension is reduced by 1 since we’ve imposed one (complex) algebraic
constraint.

(2) Subgroups of GL(n,R)

(i) O(n) = {M : MT M = I}, the orthogonal group. Closure here is again easy to see, since
for My and My in O(n)

(M M) T My My = MIMEM My =1

O(n) has inverses by construction. We note that transformations in O(n) preserve length
in the sense that if v/ = Mv with M € O(n), then

7= MG M= (M) Mt =" MM =¢-7.

If M € O(n), then det M = 41. This follows using M7 M = I and the determinant
property above.

(ii) SO(n) = {R € O(n) : det R = +1}, the special orthogonal group. Geometrically this
corresponds to the group of rotations in R"™. If {#},...,%,} is a frame in R", then
{R1,...,RU,} is a frame with the same orientation. Volume elements are preserved
by R € SO(n) (in R3, 1 A ¥y - U3 = R0 A Ry - Ri’3). We note that O(n) additionally
contains orientation reversing elements, i.e., reflections, which are excluded from SO(n).
We note also that dim O(n) = dim SO(n) = $n(n — 1) The argument has to do with the
fact that the columns of matrices in O(n) are mutually orthonormal (See Example Sheet
1, Problem 3).

(3) Subgroups of GL(n,C)
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(i) U(n) = {U € GL(n,C) : U'U = I}, the unitary group. Note that (UT);; = U U(n)
preserves the norm of complex vectors, and the proof is essentially the same as for the
length-preserving property of the orthogonal group. Note that UTU = I = |detU|? =1
(unit magnitude).

(ii) SU(n) ={U € U(n) : det U = 1}, the special unitary group.

dim U(n) = n? (real dimension)
dim SU(n) =n% -1
Note that O(n) C U(n) and SO(n) C SU(n) are the real subgroups.

Example: U(1) ~ SO(2). These have underlying manifold S, the circle.

(a) U(1) = {expif : 0 < 0 < 2x} , with § = 0, § = 27 identified. The product is expif expi¢p =
expi(f + ¢).

cosf) —sind
(b) SO2) = {R(G) N <sin6 cos 6
R(0)R(¢) = R(0+ ¢). R(#) is an counter-clockwise rotation by the angle 6 in a plane.

> :0<0< 27r}. Using trigonometric formulae, one finds

3.2.2 A Remark on Subgroups Defined Algebraically

GL(n) is obviously a smooth manifold with smooth group operations. The coordinates are the
matrix elements (det M # 0 defines an open subset of R" or (C”Q). Subgroups defined by al-
gebraic equations involving matrix entries (e.g. detU = 1 or MTM = I) are “algebraic va-
rieties.” The natural question is then, “Are they manifolds?” In general, algebraic varieties
can have singularities (non-manifold points). For example, consider the Cassini ovals, defined
by (2% +y%)? —2(2? —y?) + 1 =b.

N i
N

b<1 b=1 b>1
Figure 3.1: The Cassini ovals

The case b = 1 has a singularity. At least naively, this algebraic variety isn’t a manifold. Fortu-
nately, the group structure of our manifolds prevents singularities. The argument is the following:

Assume there is a singularity at g1 € G. Then there is a singularity at go € G, because the action
of gog; ! by matrix multiplication is smooth (see figure below). Since g, was arbitrary, singularities
occur everywhere in G. This is a contradiction, since a variety cannot be singular everywhere.
Therefore G is a smooth manifold. We conclude that algebraically defined subgroups of GL(n) are
Lie groups.
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g1
9297 "
/‘
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in bigger go
group

3.3 Lie Algebras

The Lie algebra L(G) of a Lie group G is the tangent space to G at the identity I € G. We study
the tangent space by differentiating curves in G. L(G) is a vector space of dimension dim G, with
an algebraic structure called the Lie bracket. The algebraic structure of L(G) almost uniquely
determines GG. Group geometry thus reduces to algebraic calculations. This fact was useful to Lie
and continues to be for physicists (and mathematicians, too). For two matrices X and Y, the Lie
bracket is [X,Y] = XY —Y X i.e., the commutator. We sometimes denote the Lie algebra of a Lie
group G using the lowercase Fraktur script g.

3.3.1 Lie Algebra of SO(2)

_ (cos f(t) —sin f(t)
g(t) = <sinf(t) cos f(t) >

with f(0) = 0 is a curve in SO(2) through the identity. Differentiating with respect to ¢t and

evaluating at the origin gives:
dg| _ (0 -1\
dtlt=o ~ \1 0 ) dtl=0

For any f, this is a multiple of <(1) 0

50(2):{(2 _OC) :cER}.

Note that these matrices are not in SO(2); they’re in L(SO(2)), the tangent space at the identity.

> . Thus

3.3.2 Lie Algebra of SO(n)

Consider a curve R(t) € SO(n) with R(0) = I. We require R(¢t)T R(t) = I. Differentiating with

respect to ¢, we find:
d

. . d
a(R(lt)TR(lt)) =R'TR+RTR=—T=0,Vt.

dt
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Part III Symmetries, Fields and Particles Section 3.3

At t =0, we have R = I, which gives the condition R+RT = 0. In other words, R is antisymmetric.
Therefore we find that

L(SO(n)) ={X: X + X7 =0}

= {vector space of real antisymmetric n X n matrices}.

1 1
dim L(SO(n)) = 3 (n* —n) = in(n -1)
—_——
symmetry diag =0

Note that L(O(n)) = L(SO(n)) because an O(n) matrix R near the identity has det R = 1. In
other words, SO(n) is the part of O(n) that is connected to the identity.

3.3.3 Lie algebra of SU(n) and U(n)

Let U(t) be a curve in SU(n) with U(0) = I. So U(t)'U(t) = I and det U(t) = 1. For small ¢, we
assume that U(t) can be expanded as a power series: U(t) = [+tZ+.... Z must be anti-hermitian
so that UTU = I to first order in . Then

1+tZun tZia
U(t) — tZgl 1+ tZQQ

— detU = (1 +tZ11)(1 + tZy) --- + O(t?)
=14+ t(Z11 4 Zog +...) + O(t?)
Thus we see that the condition det U = 1,Vt = Tr Z = 0. Therefore
L(SUn)={Z:Z+Z"=0and TrZ = 0}
= {n x n traceless anti-hermitian matrices}

For U(n) there is no constraint on the phase of the determinant, so L(U(n)) ={Z: Z+ZT =0} =
{n x n anti-hermitian matrices}.
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3.3.4 General Structure of L(G) for a matrix group G

(1)

Vector Space Structure:
Suppose X1, X2 € L(G). Then X = ¢1(t)|t=0, X2 = ga(t)|t=0 for curves gi(t), g2(t) € G with
91(0) = g2(0) = I. Let g(t) = g1(At)ga(ut), with A, u real. Then

d . .
%(gl(At)QQ(Mt))’t:O = (A\g192 + pg16G2)|t=o

= Ag1 + pg2
=AX1 + puXo
SAXG 4+ pXs € L(G) = L(G) is a vector space.
Note that since the definition of the Lie algebra is the tangent space at the identity, the

computation above really just shows that our definition is consistent with group composition,
since the tangent space (at any point on any manifold) is a vector space.

Bracket on L(G):
We'll now use more of the group structure. Let gi(t),g2(t) be curves in G passing through I
att =0

g(t) =T +tXy +t2W) + ...
gg(t):I+tX2+t2W2—|-...

Computing products, we find:

g1()ga(t) = T +t(X1 + Xo) + t3(X1 X + Wi + Wa) + O(t?)
(g1 (t) = T+ t(X2 + X1) + (X2 X1 + Wa + W1) + O(t%)

Define h(t) = g1(t) " ga(t) " 1g1(t)g2(t) or equivalently g;()g2(t) = g2(t)g1(t)h(t). h(t)is a curve
in G. We see that
h(t) =14 t*[X1, Xo] + ..., (3.1)

where [X1, Xa] = X1 X2 — X2 X1. If we reparametrize according to t? = s, we see that h(s) is a
curve (for s > 0) such that h(0) = I with tangent vector [X1, X2] € L(G). Thus L(G) is closed
under the bracket operation. (h(t) has higher order terms at order ¢* etc, and hence at order
s3/2 but we only need h(s) to have a first derivative, so that’s no problem.)

Comment: Non-zero brackets are a measure of the non-commutativity of G. If G is abelian,
h(t) = I Vt, so L(G) has trivial brackets.

Lemma 3.3.1. If G is 1-dimensional, L(G) has trivial brackets.
Proof. L(G) = {cX : ¢ € R} for some fixed matrix X. [cX,dX] = c¢d[X, X] = 0. O

The only connected 1-dimensional Lie groups are S' and R.

Antisymmetry and Jacobi Identity:
The matrix bracket has the following general properties

(a) Antisymmetry [X,Y] = —[Y, X]
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(b) Jacobi identity: [[X,Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 (prove this by expanding out).

Remark: An abstract Lie algebra L is a vector space with a bracket [, | : L x L — L linear
in both entries, satisfying antisymmetry and the Jacobi identity (cf. Humphreys, Intro.
Lie Alg. and Rep. Thy.)

(4) Basis and Structure Constants:
Let {T;} be a basis for L(G). Define structure constants by [T;,T}] = c¢;jxTy. Antisymmetry
says Cijk = —Cjik < C(ij), = 0. Now computing the nested brackets gives:

(T3, T;], Tk] = cij[Ti, Ti] = cijiciemTm
[[T5, k), T3] = cjriciimTm
[Tk, T3], Tj] = crircrjmTm
Jacobi identity == ¢;jiCikm + CjkiClim + CritCljm = 0

3.3.5 SU(2) and SO(3): The Basic Non-abelian Lie Groups
We begin by comparing the Lie algebras of SU(2) and SO(3), su(2) and so(3).

su(2) = {2 x 2 traceless, anti-hermitian matrices}: A basis is given in terms of the Pauli matrices:

1.
Ta = —520'(1.

Here the o, are the (hermitian) Pauli matrices:

(0 1 (0 —i (1 0
= 0)27G 0) T 0 —1)-
Recall the property of the Pauli matrices: o404 = dgpd + i€apc0c. Using this, one finds:

1
[TaaTb] = _Z(Gagb - Ubaa)

1, . )

= _Z(Zeabco-c - ZEbacac)
7

= ——€abcOc = €apcle

2
— [Taa Tb] = eaqpele

50(3) = {3 x 3 antisymmetric real matrices}: A basis for s0(3) is given by:

(00 ~ 0 -1
Ti=(00 -1|, =0
0 1

01 3 0 0

0 0),I3=11 0 O
0 -1 0 0 0 0 O
In other words, (Ta)bc = —€gpe- Then [Ta,fb] = eapels, as for su(2). So su(2) ~ so0(3). Therefore
we expect the groups SU(2) and SO(3) to be similar.

SU(2): U'U = I and detU = 1 imply that U has the form (cf. Example Sheet 1, Problem 6)
U = apl +id - & with (ag, @) real and a3 +@- @ = 1. So the manifold of SU(2) is

SU(2) = S% = unit sphere in R?
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SO(3): A rotation is specified by an axis of rotation 7 (i.e. a unit vector € R3) and by an angle
of rotation ¢ € [0,7]. (A rotation by a larger angle is thought of as a rotation about —n.) We
combine these into a 3-vector n € {ball of radius 7} C R3. Note that a rotation by 7 about 7 is
equivalent to a rotation by m about —n. Thus opposite points on the boundary are identified, and
consequently the manifold SO(3) does not actually have a boundary.

SO(3) = {ball in R? of radius 7 with opposite points on boundary identified}

- X

-
-, ~ R3
R

—-——

- ~

k——

Ve =

\ /

\\Xf/

S\ -

3.3.6 The Isomorphism SO(3) ~ SU(2)/Z,

SU(2) has a center Z(SU(2)) = Zo ={I,—1}. If U = apl +ia-d, then (1)U = —U = —agl —id-&.
Thus SU(2)/Zy = S? with antipodal points {U, —U} identified.

g 1 R*
ao
S3 = SU(2)

*. SU(2)/Zy = {upper half of S® (ag > 0) with opposite points of equator S? identified}
= {curved version of SO(3)}.
<\¢‘

_ -—-—o
~ '

o - -

Note that the “curvature” is immaterial to the group or manifold structure. There is an explicit
correspondence U € SU(2) — R(U) € SO(3) with R(-U) = R(U), where U = cos § I +isin § 7 -
& — R(U) = rotation by a about 7.

3.4 Lie Group — Lie Algebra Relation

3.4.1 Tangent space to GG at general element g

Let G be a matrix Lie group and ¢(t) € G a curve. % = ¢ is the tangent (matrix) at g(t) and

g(t +¢€) = g(t) + €g(t) + O(e?), where € is infinitesimal. We can also write g(t + €) as a product
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in G: g(t+¢€) = g(t)h(e), where h(e) = I + X + O(e?) for some X (t) € L(G). h(e) is the group
element that generates the translation ¢ — t + €.

Then I + eX(t) = h(e) = g(t) gt +¢) = g(t) "1 (g(t) + €g(t)) = I + eg(t)"Lg(t) to O(e). So
X(t) = g(t)"¢(t). Thus:

g~ 'g(t) € L(G), Vt. (3.2)
Similarly, by putting (a different) h(e) on the left of g(t) we have g(t)g(t)~! € L(G) (in general
# g71g). We see that the tangent space to G at g is not the Lie algebra L(G), but is mapped to
L(G) by either left or right multiplication by g~
Important remark: Suppose g(z1, 2, ..., ;) is a G-valued function on R¥. Then 8%1-9 = 0;g is in
the tangent space to G at g, so (0;9)g~! € L(G) and g~1(d;g) € L(G). These formulae appear in
gauge theory.
We now consider the converse. Suppose X(t) € L(G) is a given curve in the Lie algebra. We can
write down the equation:

g(t)"tg(t) = X (1),
g(0) = I (could be the more general element go).

This equation with an initial condition has a unique solution in G. The equation makes intuitive
sense because the “velocity” ¢ is always tangent to G. As a special case, consider X (t) = X =
const. Then g = gX with g(0) = I. This equation has the solution g(¢) = exptX.

Proof. By definition

o
1 n
exptX =) —(tX) (3.3)
n=0
and this series converges for all t. Then

d 1

— tX) =X +tX?+ -t2X3

pn (exptX) + + 2
=exp(tX)X

Thus the equation is satisfied and ¢g(0) = I. Note also that g(t) = exp(tX) commutes with X, so
also solves the equation ¢ = Xg. O

Claim: The curve {gx(t) = exp(tX) : —oo <t < 0o} is an abelian subgroup of G, generated by X.

Proof. Using the series definition of exp(tX) one can verify that

9(0) =1,
g(s)g(t) = g(t + s) = g(s +t) (by combining all terms at a given order in X),
g~ =g(-1)

O]

20 Typeset by W.I. Jay



Part III Symmetries, Fields and Particles Section 3.4

gx(t) is isomorphic either to (R,+) if gx(t) = I only for t = 0 or to S! if gx(to) = I for some
to # 0 and not for all ¢.

We can gain a general insight from the above considerations. Set ¢t = 1, and consider all X € L(G).
We have then found a map L(G) — G, given by X — exp X. This map is locally bijective (proof
omitted), as all elements g € G close to I can be expressed uniquely as exp X for some small X.

exp
I
LG | /\

Ly
N

G

Note that this map is not globally simple and in most cases not even one-to-one. For example,
the map R — S! given by 6 — expif € {z € C : |2|] = 1} is onto but not one-to-one, as
expi2rn = 1,Vn € Z.

In general, the image of exp is not the whole group G, but rather the component connected to I in G.

Example: O(3) is disconnected

Improper
0(3) = Rotations in
Proper 0(3)
Rotations in
0@3)
Det(R) = +1 Det(R) = —1
R e SO(3) R e 0(3)

So expso(3) = expo(3) = SO(3). Evidently improper rotations R cannot be expressed as exp X
with X antisymmetric and real.

3.4.2 The Baker-Campbell-Hausdorff Formula

If group elements are expressed as exp X, X € L(G), can we calculate products? Remarkably, there
is a universal formula:

1
expXexpY =expZ, where Z =X +Y + i[X’ Y] + higher, nested brackets.

This can be checked up to the order given by expanding out both sides. Finding the structure of
the BCH formula to all orders, and proving its validity, is not trivial.

We deduce that the Lie algebra, with its bracket structure, determines the group structure of G
near [.
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Chapter 4

Lie Group Actions: Orbits

A Lie group G can act in many ways on other objects.

Definition 6. An action of G on a manifold M is a set of smooth maps g : M — M for all g € G,
consistent with the group composition g1 (g2(m)) = (g192)(m) for all g1, g2 € G and for all m € M.

Note: This is equivalent to a map G x M — M, assumed here to be smooth in both arguments.
Definition 7. The orbit of a point m € M is the set G(m) = {g(m) : g € G}

Proposition 1. If m' € G(m), G(m) = G(m/)

Proof. m' = g(m) = G(m') = G(g(m)) = (Gg)(m) = G(m) O
Theorem 4.0.1. M is a disjoint union of orbits of G

Proof. (Omitted.) Two orbits are either the same, as sets, or have no point in common. O
é?zample. SO(n) acts on R™. The orbits are the spheres S"~!, labelled by the radius r. The origin

0 € R" is special, as its orbit is this single point.

4.1 Examples of Group Actions

Definition 8. The left action of G on G is defined by g : G — G with g(¢’) = g9’
Definition 9. The right action of G on G is defined by g : G — G with g(¢') = ¢'g~*

Note that the right action uses the inverse of g; this is necessary so that the action satisfies the
group composition law.

Definition 10. An action G x M — M is said to be transitive if M consists of one orbit.

Transitivity of the left and right actions on G. Let ¢',¢" € G. ¢’ and ¢” are in the same left orbit,

" 1—1

since g(¢') = ¢” when g = ¢”"¢~". A similar argument applies for right orbits. O
Definition 11. Conjugation by G on G is the action defined by g(¢') = g¢'g~*,Vg,9' € G

The orbit structure under conjugation is more interesting. In particular, one can show (cf. Example
Sheet 2, Problem 4) that for matrices “conjugation preserves eigenvalues.” Matrices with different
eigenvalues must be in distinct orbits. The idea is that conjugation amounts to a change of basis
in a matrix Lie group. Note also that one orbit is the identity alone, since g(I) = glg~! = I,Vg.
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Definition 12. The combined action of G x G on G is defined by (g1, 92)(¢9') = 91995 "

Note that G1 x G2 = {(91,92) : g1 € G1,g92 € G2} with the product given by (g1,92) * (g1, 95) =
(9191, 9295) and identity (I1, I).

Ezample. The actions of SU(2) on SU(2).
Recall that we can express g € SU(2) as g = agl + id@ - & with the constraint a3 + @ - @ = 1.
(One way to see this parametrization is to think of SU(2) as the subgroup of the quaternions H
with unit length.) This parametrization leads us to understand SU(2) to be S® as a manifold. If
g=aol +1id-d and ¢ = byl + ib - o, we can look at the left action given by:

9(9") = g9’ = (agbo — @ - b)I +i(agh + @by — @ x b) - &

=col +ic-o

(cf. Example Sheet 1, Problem 6 and Sheet 2, Problem 5 for details.) We see that (co,¢) depends
linearly on (bo, b) and d+c-c=0+ b-b = 1. Thus we see that the left action of g defines an
element of O(4) (depending on ay and @).
The identity I acts trivially, and SU(2) is connected, so the left action of g must be a proper rotation
(a proper rotation is an element of SO(4) with det = +1). We deduce that SU(2);, < SO(4),

where the notation < denotes a subgroup. Similarly, the right action gives a different subgroup
SU((2)r < SO(4) . In fact, the combined action of SU(2)r, x SU(2)g gives every element of SO(4).

Theorem 4.1.1. SO(4) ~ (SU(2)r x SU(2)Rr)/Zs
Proof. Omitted (cf. Example Sheet 2) O

The subgroup Zs consists of (I,I) and (—1,—1I), since (g1,92) and (—g1, —g2) act identically as
SO(4) transformations. Because of the group structure given in the theorem, it follows that the
Lie algebra is given by s0(4) = su(2)r @ su(2)g.

4.2 The General Nature of an Orbit of ¢

Definition 13. Let G act on M transitively (single orbit). Let m € M. The isotropy subgroup
(or stabilizer) at m is the subset H of G that leaves m fixed:

H={heG:h(m)=m}

We often write H(m) = m. H is a subgroup of G, because if h1(m) = m, ha(m) = m for hy, hs € H,
then (hih2)(m) = hy(ha(m)) = h1(m) = m. The inverses and identity are also in H.

Using m as a base point for M, we can identify another point m’ with a coset of H. If m' = g(m),
then m’ = gH(m). The element m’ is identified not just with one element g that sends m to m’
but with the whole (left) coset gH. Thus we have

M =~ {space of all cosets of H in G} = G/H

However, there is nothing special about the base point m. The isotropy group at m’ is H' = gHg ™",
and this is structurally the same as H. We can check this:

H'(m') = gHg ' (m') = gHg 'g(m) = gH(m) = g(m) = m’

Thus we regard G/H and G/H' as the same. This motivates the following definition:
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Definition 14. Let G be a group acting smoothly and transitively on the manifold M. M is said
to be a homogeneous space.

The critical part of the definition above is the transitivity: since there is just one orbit, all points
on M are “similar.”

Proposition 2. If H is a Lie subgroup of G and M 1is as above, then dim M = dim G — dim H.

We can check this statement near m. The tangent space to M is L(G)/L(H) (as vector spaces),
as H acts trivially. If we find a vector space decomposition L(G) = L(H) & V;,,, with V,,, a vector
space complement to L(H) (could be orthogonal complement), then V,,, can be identified with the
tangent space to M at m.

Ezample. SO(3) acts transitively on S2, the unit sphere, since any point can be rotated into any
other point. The isotropy group at n is the SO(2) subgroup of SO(3) rotations about the axis
through 0 and 7. Thus S? = SO(3)/SO(2). Note that we usually choose the base point 7 so that
the SO(2) rotations are about the x3-axis.

>
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Chapter 5

Representations of Lie Groups

Definition 15. A representation D(G) of G is a linear group action v — D(g)v of G on a vector
space V, by invertible transformations. Let dimV = N. Then N is called the dimension of D and
D(g) € GL(N),Vg € G.

Linearity says that
D(g)(aw1 + fvz) = aD(g)vr + BD(g)vz

for v1,v9 € V. To be a group action, D must satisfy

D(g192) = D(g91)D(g2)

We see that identity and inverses are particularly well-behaved: D(I) = Iy and D(g~!) = D(g)~ .
Note that in order to get explicit matrices we must choose a basis for V.
Definition 16. A representation is faithful if D(g) = Iy only for g = I.

In a faithful representation distinct group elements are represented by distinct matrices. Note that
a slightly more sophisticated definition would say that the homomorphism ¢ : G — GL(N) is
injective, i.e., that ker(¢) is trivial.
Ezample. Representations of the additive group R. We require D(a + ) = D(a)D().

(a) D(a) = exp(ka),k € R. This is faithful if k£ # 0.

(b) D(a) = exp(ika), k € R. This is not faithful as D(a) =1 for o = 2wn/k.

cosa —sinao
sinae  cos«

() D) =

). This representation has N = 2, and is not faithful.

(d) Let V' = {space of functions of x}, an infinite-dimensional space. D is defined by (D(«) f)(z) =
f(z — a). This is a simple example of an induced representation (see Chapter 12).

5.1 Types of Representation

Definition 17. Let G be a matrix Lie group with matrices of dimension N. Then the representation
D(g) = g is called the fundamental representation of the group, and is N-dimensional.

Definition 18. The representation of G that sets D(g) = Iy, Vg € G (and for any N) is called the
trivial representation.
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Definition 19. Let G be a matrix Lie group. Let V = L(G), the Lie algebra of G. The adjoint
representation of G, denoted Ad, is the natural representation of G on L(G):

D(g)X = (Adg)X =gXg ', g€ G, X € L(G)

Note that the adjoint representation Ad is the linearized version of the action of G on itself by
conjugation. We do a couple of checks to make sure that we have a well-defined representation:

e Closure: gXg ! € L(G)
There exists some curve g(t) = I+tX+. .. in G with tangent X at ¢ = 0. Then g(t) = gg(t
Lat ¢t =0

is another curve in G and §(t) = I + tgXg~' + ... with tangent gXg~! at
gXg~t € L(G).

Y

e Ad is a representation:

(Adg192)X = g192X (g192) "

= 192X 95 97"
= (Adg1)(Adg2) X

Note that we are thinking of L(G) as a real vector space, so Adg € GL(dimG,R). In fact, for
U(n) and O(n), Adg € SO(dim G).

Definition 20. An N-dimensional representation D of G is said to be unitary if D(g) € U(N),Vg €
G. If D is also real, then D(g) € O(N), and the representation is said to be orthogonal.

Remark: Unitary representations are important in quantum mechanics and its various generaliza-
tions because a symmetry group should preserve the norm of all wave functions.

Definition 21. Let D be a representation of G acting on the vector space V. Let A be a fixed
invertible transformation on V. Then we say that D(g) = AD(g)A™! is an equivalent representation
of G.

Note that equivalent representations are related by a change of basis of the vector space V.

Definition 22. Let D be a representation of GG acting on V. D is reducible if there exists a proper,
invariant subspace W C V, i.e., there exists a subspace W such that D(G)W C W. If no such
subspace exists, then D is an irreducible representation, which we will sometimes call an “irrep”.

Note that D(G)W = W, since I € G. (Also, for any g € G, D(g)W = W, because D(g) is
invertible.)

Definition 23. A representation D is totally reducible if it can be decomposed into irreducible
pieces, i.e., if there exists a (possibly infinite) direct sum decomposition V.= W; @ Wo @ ... W}
such that D(G)W; = W; and D restricted to W; is an irrep.

In matrix language, for a totally reducible representation there exists a basis for V such that,
simultaneously for all g, D(g) is block diagonal, taking the form:

Dl(g) 0 0
0 D 0
D(g) - : 2:(9) : ’
0 0 0 Dig)

where the D; are each irreps. W; consists of the column vectors which are zero in the subcolumns
acted on by Dj,j # i, and non-zero (generally) in the subcolumn acted on by D;.
Note that it is usually not easy, nor even desirable, to find the basis that makes D block diagonal.
One then needs other techniques to determine the decomposition of D into irreps.
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Theorem 5.1.1. A finite-dimensional unitary representation is totally reducible.

Proof (sketch). For each invariant subspace W, the orthogonal complement W) is also invariant,
soV=Wao®W,. Now reduce W and W until the process ends. Note that the process must end
for a finite-dimensional representation.

(cf. Example Sheet 2, Problem 9 for more details) O

The notions of irreducible representation, and total reducibility, are important, because vectors
within W; are actually related by G. The block diagonal form shows that vectors in W; are not
related by G to vectors in Wj (for j # 4). If G is a symmetry acting on the Hilbert space V' of all
physical states, then only physical states (particles!) within an irreducible subspace W have similar
properties.

Ezample. Let V' = {space of functions f of x with period 27}, i.e. f(z + 27) = f(x). The circle
group S! acts on V by the representation (D(a)f)(x) = f(z — «), where 0 < a < 2. This repre-
sentation is infinite-dimensional.

The space W,, = {f(z) = c,e*} is a l-dimensional invariant subspace for each n € Z, be-

cause f(z — a) = ¢,e™*=®) = ¢~ ¢"* The 1-dimensional representation that occurs here is

d™ () = eine,

The Fourier series decomposition of a general function f

exhibits the complete reducibility of V' as
V=—oWaaW ieWiaW oWad---

Each distinct 1-dimensional irrep of S occurs once in V.
There is a generalisation of this analysis for the action of SO(3) on functions defined on S? (de-

composition into spherical harmonics), and more generally for the action of any Lie group G on
the functions on any of its coset spaces G/H.

27 Typeset by W.I. Jay



Chapter 6

Representations of Lie Algebras

By restricting a representation D of G to elements close to the identity I, we obtain the notion of
a representation of the Lie algebra L(G).

Definition 24. A representation d of L(G) acting on a vector space V' is a linear action v — d(X)v,
with X € L(G) and v € V, satisfying

d([X,Y]) = d(X)d(Y) — d(Y)d(X) = [d(X), d(Y)]

As with the case of groups, the dimension of the representation is dimd = N, where NN is the
dimension of the vector space V.

Example: For a matrix Lie algebra, the fundamental representation is d(X) = X. There also
exists the trivial representation in which d(X) = 0,VX € L(G).

A representation d of L(G) is called (anti)hermitian if d(X) is (anti)hermitian for all X € L(G).

6.1 Representation of L(G) from a Representation of GG

Let g(t) =1 4+tX +--- € G. Write D(g(t)) = Iy +td(X)+ ..., which defines d(X). Then d is the
representation of L(G) associated to D. We check now that the Lie bracket is preserved:
As D is a representation of G

D(g7 95 9192) = D(91) "' D(g2) ' D(g1)D(g2).

Now set
gl(t) :I+tX1+t2W1 + ...
gg(t) :I+tX2+t2W2+...
g tt) =T —tXy —t*(Wy — XP) + ...
g t(t) =T —tXy —t*(Wo — X3) + ...

After a brief computation very similar to the one leading to (3.1) we see that:

LHS = D(I +t*[X1, Xo] +...) = Iy + t2d([X1, X2]) + ...
RHS = Iy + t*[d(X1),d(X2)] + ...

and so we see the bracket is preserved.
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Note: If D is a unitary representation of G, then d(X) is antihermitian for all X € L(G). Why is
this true? If D(g) is unitary, then D(g) = I + td(X) and D(g)' = I +td(X), so D(g9)D(g9)' =1
implies that d(X) + d(X)! = 0.

6.1.1 The adjoint representation of L(G)

The representation ad of L(G) is associated to Ad of G (both of these representations act on L(G),
though one is a group representation and the other is a Lie algebra representation).
Recall the adjoint representation (Adg)Y = gYg 1Y € L(G). Set g(t) = I +tX, so g~1(t) =
I —tX. Then
(Adg)Y = (I +tX)Y(I —tX) + O(t?)

=Y —tYX +tXY + O(t?)

=Y +t[X, Y]+ O(t?)

= (I +t(ad X))Y + O(t?)

Thus we see that
(ad X)Y = [X,Y]

This is the adjoint representation of L(G) acting on itself. We can check easily (about three lines
of computations) that ad[X,Y]| = [ad X, ad Y] using the Jacobi identity. (Act with both sides on
Z € L(G).)

6.2 Representation of G from a Representation of L(G)

Given g € G, express g as exp X for X € L(G), then use the formula: D(exp X) = exp(d(X)). At
least locally (i.e., in a neighborhood of the identity), this defines a representation D of the group
G. How do we check this? We need to show that D “commutes appropriately” with exp:

D(exp X)D(expY) = D(exp X expY’)
(See Example Sheet 2, Problem 11). Summarizing, we have
(a) Always true: Rep. of G — Rep. of L(G)
(b) Mostly true: Rep. of L(G) — Rep. of G (works locally, but can encounter problems globally)

In practice (in physics) it is often easier use representations of L(G) rather than the corresponding
representations of G.

Important questions now are: How can we classify and construct the irreps of L(G) and G? What
are their dimensions? We start to answer this by looking at su(2)(= L(SU(2))). The results are
very helpful as most Lie algebras have several inequivalent su(2) subalgebras.

6.3 su(2): The Mathematics of Quantum Angular Momentum

We know that su(2) has the standard basis:

1
{Ta = —iiaa a = 1,2,3}
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It is convenient for our current purposes to construct a new basis using (non-real) linear combina-
tions:

0 1 1 . ‘

ey = <0 O) = 5(01 +iog) =iTh — T»
00 1 . .

e_ = (1 ()> = 5(01 —iog) =Ty + Th

Note: This notation with kA and ey appears in the text by Humphreys. h, e, e_ can be thought of
as analogous to the familiar operators Js, Jy, J_ in angular momentum theory.
We have the brackets:

[h,eq] = ey
[h,e_] = —e_
ler,e—] =2h

and one may also express these bracket relations in terms of the adjoint representation ad of su(2):

(adh)e; = ey
(adh)e_ = —e_
(ad h)h = 0

We see that we have diagonalized the operator ad h, and ey,e_, h are eigenvectors. A maximal
commuting (i.e., abelian) subalgebra in su(2) is generated by h. The non-zero eigenvalues of ad h
are called roots. 1 (0) 1

<€ ® >

Figure 6.1: The root diagram for su(2)

6.3.1 Irreducible Representations of su(2)

The irreducible representations d¥) of su(2), with the label j (spin), are as follows:

= poleo

1
3
The representation d) acts on V), a vector space of dimension 2j + 1. We introduce a basis
{|7,m)} for VU, withm = 4,5 —1,...,—j +1,—j (2j + 1 values). Then:

D (h)|j,m) = m|j,m)

dD(e-)[j,m) = /(G —m+1)(j+m)|j,m —1)

D (ey) ljm = 1) = /(G = m+1)(J +m) |, m)

One can show that [dV) (e, ),d) (e_)] = 2dU)(h) etc. This irreducible representation is antihermi-
tian, since d¥) (h)T = d¥)(h) and dV¥) (e, )t = dU)(e_), which tells us that d)(T}) is an antihermitian
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e A SR B B
Figure 6.2: The weight diagram of d(7)

matrix. (Note: the basis {h,e,e_} lives in the complexification su(2)® = su(2) ® C). The eigen-
values of dU )(h) are called weights and are real. For d9), the weights are given by the labels m.

Some specific representations are: d(® is the 1-dimensional trivial representation, d3) is the fun-
damental representation, and d(!) is the adjoint representation.

-1 0 1

Figure 6.3: The weight diagram of d), which is the same as the root diagram including zero

One can show that d) exponentiates to an irreducible representation DU) of SU(2) for all j. As
L(SU(2)) and L(SO(3)) are the same, they have the same irreps d¥). However, only for integer
j does the irrep dU) exponentiate to an irrep of SO(3). One gets an SO(3) irrep because within
SU(2), for integer j, DY) (—TI) = Ipj;q. (If j is half-integer, DU)(—T) = —I5;,1, which forbids the
Zs quotient).

6.4 Tensor Products of Representations

Tensor products are one of the most useful constructions in physics. Using tensor products one can
combine representations of groups to produce a wide variety of physically interesting and useful
further representations. Let D(l)(g)ag and D®) (9)ap be representations of G acting on vectors

(bg) e v, <Z>l()2) € V. We define the tensor product DM @ D@ acting on V) @ V2 by:
(DY @ D®)(9)aa, = DM (9)asDP (9)a
This acts on ® € V(D @ V2 by:
Do > By = DW(9)as D (9)ab @t

A special form of the tensor ®,, is the factorized form cbg) ((12) but this is not necessary (in other
words, not all tensors are the direct product of vectors). The dimension of the tensor product
representation is
dim(DW @ D@ = (dim DM)(dim D®)

6.4.1 The Representation of L(G) associated to DY @ D)
Let g € G. Set g = I +tX. Then, up to order ¢,

DW(g) ® DP(g) = (I +tdV (X)) ® (I +td? (X))

=TI+ t(dYX)oI+12d?(X))

Thus the associated representation of L(G) is:

d1® =V @1+ 1®d?
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We see that in the tensor product representation d('®2) the eigenvalues of d® and d@ add.
Therefore the weights of d1®2) are the sums of the weights of dV) and d®.

6.4.2 Tensor Products of su(2) Irreducible Representations

Let j denote the spin j irreducible representation d?) of su(2). The tensor product j®j" decomposes
as

ji®oji=0+/)oG+i-1o---@lj—Jj (6.1)

into a direct sum of irreducible representations. This formula, known as the Clebsch-Gordon series,
is used for combining states of particles with spins j and j’. One can verify the formula above by
comparing weights on both sides (cf. Example Sheet 3, Problem 1).

Example:
j = 1 has weights {—1,0,1}. j = %has weights {—1,1}. Thus 1®% has weights {—%, —%, —%, %, %, %} =

272
{=3 =333 U{-3.5} Thus 1o ;= 5@ 5

R _

X
P
|

= D

Figure 6.4: A diagrammatic illustration of weights adding.

In Eq.(6.1) each state on the right |J, M) with |j — 5| < J < j + j' can be expressed explicitly as
a linear combination of states on the left:

|J, M) :Zcm lj,m) @ [§', M —m)

One writes more formally the coefficients ¢, as the Clebsch-Gordon coefficients cﬁﬁ;m,, which
(after a simple rescaling) are also known as the Wigner 3j symbols. They are non-vanishing only
for M = m + m/, which is just the statement that weights add. For more information, see Landau
and Lifschitz, Quantum Mechanics, §106.

6.5 Roots and Weights for general L(G)

The following applies to the large class of Lie algebras called “semisimple”, which includes L(SU (n))
and L(SO(n)). The definition is clarified in Section 8.2.

Definition 25. Let L(G) be a semisimple Lie algebra. A Cartan subalgebra is a subalgebra H of
L(QG) such that:

(a) H is a maximal Abelian subalgebra of L(G)
(b) The adjoint representation ad of H is completely reducible.

Different Cartan subalgebras are related by conjugation by elements of G, so the Cartan subalgebra
is essentially unique.

Definition 26. Let H be the Cartan subalgebra of L(G). The dimension of H is called the rank
of G, and denoted by k.
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Definition 27. Let h; : i« = 1,2,...,k be a basis of H. If L(G) has dimension n, one can find
a standard basis {h1, ha,..., hg;er,ez,..., e,k }, where each e, is a simultaneous eigenvector for
all ad h; (since these mutually commute). The simultaneous eigenvalues of ad h; (collected into a
non-zero k-component vector) are called roots.

The root diagram exhibits the roots in Cartesian k-space (simplest for k =1 or k = 2). There are
n — k roots.

Now consider a representation d of L(G) acting on the N-dimensional vector space V. With h; as
above, the matrices d(h;) can be simultaneously diagonalized (since they again mutually commute).
One can therefore find a basis for V' consisting of simultaneous eigenvectors of d(h;). Let this basis
be {11,19,...,9¥n}. For each basis element ¢ we have

d(hi)p =mitp , where i =1,...,k

so 1 is the simultaneous eigenvector of d(h;) with the vector of eigenvalues m = (mq, ma, ..., mg).
m is called the weight vector, or simply weight, of 1. The set of all weights, for ¢ = 11,2, ..., ¥nN,
defines the set of weights for the representation d. The weights are k-vectors, and there are N
of them. Some of them can be identical (i.e., there can be “degeneracy”) and some can be zero
vectors. (In the case of su(2), the weights were single numbers because the Cartan subalgebra was
spanned by a single element h.)

The weight diagram of d exhibits the weights in Cartesian k-space (and the roots are sometimes
shown at the same time). The most important weight diagrams are those of the irreps of L(G).
The weights of a reducible representation d are just the union of the weights of all the irreps in
the decomposition of d. Weight diagrams can therefore be used to determine the decomposition of
a representation into irreps. (This is much easier than trying to find the block diagonal form, and
also easier than using characters.) There is also a (grand) weight diagram, which shows all possible
weights of all possible representations of L(G). The grand weight diagram is a lattice in k-space,
called the weight lattice.

The roots of L(G) are the non-zero weights of the adjoint representation ad of L(G). Thus

{roots of L(G)} C {weight lattice of L(G)}

We saw above that in a tensor product representation d(*®2) the eigenvalues of d® and d® add.
In particular, each eigenvalue of d(*®2)(h;) is the sum of an eigenvalue of d(V)(h;) and an eigenvalue
of d(2)(hi). The weights of d1®2) are therefore obtained by adding a weight of d¥) and a weight of
d® in all possible ways. This will be illustrated in Chapter 9.
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Chapter 7

Gauge Theories

Classical and quantum field theory is constructed from a Lagrangian density £ which is gauge
invariant and Lorentz invariant. The action is:

S = Ld*x
R4

A gauge theory has a Lie group G acting as a local symmetry, i.e., acting independently at each
spacetime point. Fields differing by a gauge transformation are physically the same.

7.1 Scalar Electrodynamics

Here the gauge group G is U(1), which is abelian. This theory describes the electromagnetic field
interacting with other electrically charged fields. The U(1) global symmetry leads to charge con-
servation via Noether’s Theorem. Gauge symmetry is local and leads, additionally, to massless
photons (see below).

We begin with the ungauged theory with a complex scalar field ¢(x):
1 — _
L = 50,60"6 = U(9)

where U is a function (usually a polynomial) of |¢|? = b. We use the convention 7, =
diag(+1,—1,—1,—1) for the Minkowski metric. So 0,00"¢ = 0ppOy¢p — V¢ - V¢. This con-

vention gives us a positive kinetic term (involving time derivatives) in L.

L is Lorentz invariant and invariant under the global U(1) symmetry ¢ — €'®¢, ¢ — e "*¢. To
obtain a U(1) gauge theory, £ must also be invariant under

o(z) = () (7.1)

where a(r) is an arbitrary, smooth real function. The U(¢¢) term is gauge invariant as it stands,
but the derivative terms cause a problem. The way to solve this is to introduce a new field, the
real gauge potential a,(x), and the gauge covariant derivative of ¢:

D¢ = 0,¢ —ia,¢

(In this definition of D, we have set the coupling to unity.) We postulate that under the gauge
transformation (7.1) the gauge potential transforms according to:

ap(z) = au(z) + Oyo(z)
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With these definitions, we see that D,¢ transforms in the same way as ¢ (“covariantly” with ¢):

D, ¢ — 8M(ei°‘q5) —i(a, + (%a)(eiaqﬁ)
= i(0,Q)e P + " 0ud — iaue'd — i(Da)e"
= eia(ﬁuqﬁ —ia,Q)
— eiOcDud)

Similarly, the covariant derivative of ¢ is D,@ =D,¢p= a,@ + iaua, and so
D,¢+— e "“D,é

under the gauge transformation. With these modifications, WD“¢ is gauge invariant and Lorentz
invariant.

The field a,, is also dynamical, and so we need its derivatives in £. The electromagnetic field tensor
fuw = Ouay, — Oya,, appears in L. We can easily verify its gauge invariance:

Juv = Ou(ay + 0pr) — 0y (ay, + Opa)
= 0,a, — Oya, , by symmetry of partial derivatives

:f,uu

We now combine these ingredients to construct a Lagrangian density for scalar electrodynamics:

L= fw ™ + 506D~ U(36).

In order to understand the signs, we separate this equation into time and space parts. Recall:
e; = foi so € = 0pd — Vag, and by = %eijkfij so b =V x a, where € and b are the electric and
magnetic fields. Using this notation, we find

1

_ 15— o _
L=— DopDog — §D¢ D¢ — U(o9)

11— 1- - 1= = —
¢+ &+ 5DobDop—5b- 5~ 506 Do — U(49)

(—2¢-&+2b-b) +

=
o

N |

“Kinetic Terms” “Potential Terms”

This is a “natural Lagrangian density” in the sense that it takes the form £ =T — V, where T
is quadratic in time derivatives. However, ag is not dynamical. For completeness, we give the
Fuler-Lagrange equations, though their derivation is not a part of this course:

D, D¢ = =2U"(¢¢)¢
v i~ v ¥aY PN
Ouf™ = ~5(6D"6 — 6DV9)
where U’ is the derivative of U with respect to its argument ¢a.

Note: These are second-order evolution equations for ¢, d. The v = 0 component is rather different
(Gauss’ law...).
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7.1.1 Field Tensor from Covariant Derivatives

[Dy, Dy]¢ = (Op — iau)(9y —iav)¢ — (k<> v)
= (0, —1a,)(0vd — ia,¢) — (1 <> v)
= 0,070 — 1(Oyav)d — 10,070 — 10,050 — apear® — (L <> V)
= —i(Ouay, — Opay)P
= —ifwd

So we see that the field tensor arises as a commutator of covariant derivatives.

7.2 A Non-Abelian Gauge Theory: Scalar Yang-Mills Theory

We now extend this formalism to a general gauge group G. We fix G = U(n) or some Lie subgroup
of U(n) (e.g., SU(n),SO(n),...). We introduce the fundamental scalar field

(I)l(ilf)

which has n complex components. As before, we can consider the global action of G
®(z) = g0(x)

where g € GG is independent of x. However, we will require our theory to be invariant under gauge

transformations

O (z) = g(z)®(x)
where g € G depends on spacetime location. As previously, this inspires us to introduce the covariant
derivative

D,® = (0,+ A,)?,

with gauge potential A,(z) € L(G). In particular, A, (as a member of the Lie algebra of U(n))
is an n X n antihermitian matrix. Although there are certain geometric motivations, we postulate
that A, gauge transforms as:

Ay gAug_l — (O )g

Remark. Earlier (see the discussion leading to (3.2)) we discussed why expressions of the form
g 1(dug) and (9,9)g~! are elements of the Lie algebra L(G). In our discussion of the adjoint
representation of G, we also found that (Adg)X = gXg~! € L(G) where g € G and X € L(G). So
A, remains in L(G) after a gauge transformation.

Remark. This definition for the transformation of the gauge potential A, is consistent with our
previous postulate for the transformation law in the abelian case of scalar electrodynamics. There,
—iay, > g(—ia,)gt — (9.9)9~" = —ia, — 9, when g(z) = ') 50 a, + a, + Oy

We see that D, ® transforms covariantly with ®:

D,® = (au + Au)q) = (au + gAug_l - (3u9)9_1)9‘1)

= (Ong)® + 9(0u®) + gALP — (Fng)P
=g(0,®+ A,9)
=gD,®
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We now look for the Yang-Mills field tensor by examining the commutator of covariant derivatives:
[Dyus D)@ = (0 + Ap) () + AY)® — (1 > v)
= 0,0, + A,0,® + 0u(A,®) + A A D — (11 < 1)
= 0,05 + A0, + 0, AP+ B ® + AL AD — (5 )
= (OpAy — 0, A, + [Ay, A))®
=F,®

so we define F},, = 9, A, — 0, A, + [A,, A)] as the field tensor in the non-abelian case.

Note: F,, € L(G) and F,, = —F,,,. The final term in F},, can be interpreted abstractly as the Lie
bracket and not simply as the matrix commutator.

Proposition 3. Under a gauge transformation g(x), Fp, — gFWg_l.
Proof. Dy, D,)® — g[D,,, D,|® = gF,,® = (9F,,97"')(g®). Thus we see that F},,, — gF,,g~". O

Remark. One can also compute this directly by gauge transforming A,, but the calculation is
longer.

7.2.1 Lagrangian Density
For the Yang-Mills gauge potential A,, coupled to the scalar ®, the Lagrangian density is given by:

L= iTr(FWF’“’) + %(D,;I))TDWI) —U(®'0).

Lorentz invariance of L is clear, since all the Lorentz indices are contracted using the Minkowski
metric. However we still need to check gauge invariance:

b — gd

df i &TgT = dTg™1 since we're in U(n)

LD BTgTgd = BT,
soU ((IDTCID) is invariant. Since D, ® transforms as ®, the same argument applies to the second term
in L. For the first term we see:
Tr(Fu, F*) — Tr(gFm,g_lgF’Wg_l)
=Tr(FuF #g=lg) | since Tr is invariant under cyclic permutations

= TI'(F/“,FMV)

Thus, the Lagrangian density is gauge invariant, and so is the action.

From the covariant derivative D, ® = (9, + A,)® and the field tensor F),, = 0, A, —0, A, +[A,, Al
we see that the kinetic terms in the Lagrangian density are:

1 1
—5 Tr(FOiF()i) + Q(Doq))TDO(I)
As Fp; is an antihermitian matrix, —% Tr(Fo; Fo;) is positive. Why is this true? If X is antihermitian,

Tr X? = XopXpa = —XapXig = — Y [ Xasl
aMB

Hence all kinetic terms are positive. This is a consequence of the gauge group G being unitary (so
elements of its Lie algebra are antihermitian).
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7.2.2 Adjoint Covariant Derivative

Not all fields transform as ® +— g® under gauge transformations. We could also have an adjoint
scalar field U € L(G) transforming as ¥ — g¥g~! (This looks like the transformation of F,,.) In
this case, the covariant derivative is:

D,V = 8,V + [A,, V]

1 1 -1

To check this, one substitutes the transformation laws ¥ — gWg™" and A, — gA,g~" — (0u9)g
for the scalar field and gauge potential, respectively, into the proposed formula. One then sees after
a few lines of computation that the covariant derivative transforms as ¥, i.e., D,V — g(D,¥)g ™!

7.2.3 General Covariant Derivative

Abstractly, we write D,, = 0,+A,,, where A, € L(G) and [D,,D,] = F,,, = 0,A, —0, A, +[Au, Ay
In order to act concretely, we need a field ® € V (V is a vector space) and a representation D
of G acting on V. (Note that since D in this chapter denotes a covariant derivative we use D
for a representation.) Then under gauge transformations the field transforms as ® — D(g)® and
D,® =0,®+ d(A,)P, where d is the representation of L(G) associated to D.

Claim: D, ® transforms like ® under gauge transformations.
Proof. We know ® — D(g)® and d(A,) — D(9)d(A,)D(g~ ') — (8,D(9))D(g ') Thus:

Du® = 9,® +d(A,)® — 9,(D(9)®) + (D(g)d(Au)D(g_l) ~ (0uD(9))D(g~")D(9)®

W"‘D 9)(6u D(g )d(Au)(I) - (9
D(9)(0u® + d(A,)®)
=D(9)D,®

Thus D,,® transforms covariantly with ® under gauge transformations. O

7.2.4 The Field Equation of Pure Yang-Mills Theory
The field equation for pure Yang-Mills theory is:

O FM + Ay, F*] =0

Remark: This is an equation for A, involving second-order derivatives. In Yang-Mills theory, F'*”
is a derived quantity, while A, is considered fundamental (contrast with electromagnetism). We
may rewrite the field equation more compactly using the adjoint covariant derivative:

D,F" =0

7.2.5 Classical Vacuum

Naively, the classical vacuum is A, = 0. We can gauge transform this to A, = —(9,9)g~". This is
a “pure gauge,” which is physically the same as the vacuum. The Yang-Mills field tensor Vamshes
in both the classical vacuum and the pure gauge transformed vacuum: Fj,,, = 0 for both 4, =0

and A, = —(0,9)97 1.
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Proof.
Fly = 0uAy — 0, A, + [A, A
= 9u(—(0vg)g™") = Ou(—(0ug)g™") + [—(%9)9‘1,—(&9)9_1]

0, (~
M < )(u9™") + Foaedg=" + (0,9)(Bvg ™) + (0.9)9(309)g ™" — (B09)g™ " (Dug)g ™"
= (0,9)[(0g™ ) 10, ) = (0,9)[(Oug™ ) + 9~ l(aug)g‘l]

= (0,9)[0u(9 " 9)]g o (0,9)[0(g " 9)]g ™"

But g~'g = I = const, so 8,(¢g~'g) = 0. Thus F},, = 0 in the pure gauge A, = —(9,9)g~". O

If there is a fundamental scalar field ® as well, then in the vacuum ® = 0 (provided ® = 0 minimizes
the potential U(®1®)), and D,® = 0.

7.3 A Very Brief Introduction to Mass and the Higgs Mechanism

Recall the Klein-Gordon theory for a scalar field ¢ is governed by the Lagrangian density:
1 L 9.9
525 u¢3u¢_§m ¢
As shown in quantum field theory, the equation of motion is the Klein-Gordon equation:
9,0" ¢ +m?p =0

This equation has wavelike solutions of the form ¢ = expl[i(wt — k - Z)] provided w? = [k|? + m2.
Here m is the “mass parameter” of the field. Particles arise When the field is quantized. Particle
energy is given by F = hw; particle momentum is given by p'= hk. Thus E2 = 1512 + (hm)?. So in
units where ¢ = 1, the particle has mass Am. In units where also A = 1 the mass is m.

7.3.1 Electrodynamics

We have the Lagrangian density £ = —i fu f* with fu, = Ouay, — Oya,. The Maxwell equation
says:

Ouf =0 = 9,(8"a”) — 8 (9ua”) =

If we work in the Coulomb gauge, 0;a; = 0,7 = 1,2,3, i.e., V-a@ = 0, then 9,a" = 0pag. Let us take a
closer look at the v = 0 equation 8M8“a0 — 80(80a0) (8080 —0;0;)ag — 0pOpap = 0 = VZay = 0.
Without any special boundary conditions or sources, the solution is evidently ag = 0. The remain-
ing equations are (0,0")a; = 0. These are three massless wave equations.

We see that polarization is transverse to momentum: If a; = € expli(wt — k - )], then w? = |k|2
(massless!), and the gauge condition 0;a; = 0 tells us k- € = 0. After quantization, the photon has
the following properties:

e zero mass, so energy satisfies £ = |p]
e 2 (transverse) polarization states: € L p

e non-vanishing momentum: p # 0
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The last condition is because the w = k = 0 wave, a; = €;, is pure gauge and has vanishing field
tensor. So it is the vacuum.

The quantized particles of pure Yang-Mills theory are also massless, but confined. They are called
gluons in the SU(3) theory of quantum chromodynamics. This phenomenon is only partially
understood.

7.3.2 Perturbative Effect of Interaction of EM Field with a Charged Scalar
Field

The scalar particle mass m is renormalized, thereby changing its value. The photon, however,
remains massless. This result is complicated to prove. However, it may be understood as arising
from:

(a) No term of the form §M?2a,a” is allowed, because it wouldn’t be gauge invariant.

(b) A massive vector particle can have p' = 0, and it then has three polarization states (i.e.,

€-p =0 doesn’t constrain € if 7= 0). However a continuous perturbation cannot change the
number of polarization states.

7.3.3 Higgs Mechanism

The Higgs mechanism evades these two previous arguments. In scalar electrodynamics, the “pho-
ton” can become massive. The abelian Higgs model has the Lagrangian density:

1 1—— 1 1. -
L= =2 Furf" + 5DubD 6 + 1706 — T0(66)° (7.2)

Evidently, the potential is U = —34%¢¢ + 1A (¢¢)? = —1u2|¢|> + 1A[8]%
U U

Im(¢)

--= Re(¢) 19|

Figure 7.1: The so-called “Mexican hat potential” (before shifting it up)

Often it is convenient to shift the potential up and write U = $A(|¢|> —v?)?, where pu? = Av?. This
shift is by a constant value of %)\1)4, which has no effect on the field equations. The vacuum is
based around the classical field that minimizes the energy, and in particular minimizes U. It is not
at ¢ = 0, but where |¢| = v. Further, the vacuum is degenerate (related by gauge transformations);
it is a non-trivial orbit of the gauge group U(1). We call v the vacuum expectation value (vev) of
¢ (or more accurately of |¢|). The simplest vacuum is ¢ = v,a, = 0. We can gauge transform
this vacuum to ¢ = vexpia(z),a, = J,a. A natural question is then how this affects the two
arguments above that kept the photon massless.
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(a’) There is now a mass term for ay:

Part of $D,¢D"¢ is 3(—ia,d)(—ia¢) = La,at|p|?. Close to the vacuum, this is Jv?a,a” +
higher order terms. Thus the “photon” acquires mass v and gets the new name massive vector
boson.

Remark: The term we’ve singled out would, by itself, violate gauge invariance. However, the

other terms present in the Lagrangian combine to preserve the gauge invariance.

(/) The massive vector boson has three polarization states. We can impose the gauge condition

Im ¢ =0, ¢(x) =v+n(x)

where n(z) is real. We cannot simultaneously impose the Coulomb gauge. Thus the physical
particles are:

e a massive vector boson with three states, and
e a real scalar particle H from the field n with one state.
Alternatively, in the Coulomb gauge, we need to allow ¢(z) = exp[if(z)](v + n(z)) with

B(z),n(z) real. The third (longitudinal) polarization state of the vector boson now comes
from . For the mass of the Higgs particle H, look at the quadratic terms in 7 (with a, = 0).

1 1 1
L, = 5 ,motn — Z)\((v + 77)2 — v2)2 =35 ,motn — Ml 4

which we find from substituting ¢(x) = v+n(x) into £. Thus we see that my = V2 v = /2.

7.3.4 Higgs Mechanism in the Non-abelian Case

The Standard Model has electroweak gauge group G = U(2) and a scalar field ®, which is a doublet
of complex scalar fields. U(2) acts by the fundamental representation. The Higgs mechanism occurs
if ® # 0 in the classical vacuum, i.e., if the minimum of the potential U(®f®) is on a non-trivial
orbit of the gauge group G. We expect the orbit to have the form G/K for some subgroup K < G.
The gauge symmetry is still present, but the choice of a vev for ® (which is just a choice of gauge)
apparently breaks the G-symmetry. One says that the G-symmetry is spontaneously broken, while
the K-symmetry (which leaves the vev fixed) remains unbroken. Massless gauge bosons remain for
K. In the Standard Model, G = U(2), K = U(1), and as U(2) is a 4-dimensional Lie group, we get:

e 3 massive vector bosons W+ W~ Z
e 1 massless vector boson, the photon
e 1 real (electrically neutral) Higgs boson

The masses of the vector bosons and Higgs particle are unrelated, so the Higgs mass had to be
determined experimentally.
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Chapter 8

Quadratic Forms on Lie Algebras and
the Geometry of Lie Groups

8.1 Invariant Quadratic Forms

For a matrix Lie algebra L(G), we have the quadratic form L(G) x L(G) — C (symmetric inner

product) given by:
(X,Y) = Te(XY)

where X,Y € L(G). This quadratic form is G-invariant in the following sense:
(X,Y) = (9Xg™,gYg ") = Te(gXg 'gYg ") = Te(XY) = (X,Y)

where ¢ € G. One can also use a different representation d of L(G) and define (X,Y)y =
Tr(d(X)d(Y)), which is similarly invariant: (¢Xg~',gYg )y = (X,Y)s. This is a result of the
following lemma:

Lemma 8.1.1. If d is a representation of L(G) associated to the representation D of G, then
d(gXg~") = D(g)d(X)D(g)~".

Proof. For ¢ € G
D(g99'9™") = D(9)D(¢")D(g) ™"

Now set ¢’ = I +tX with ¢ small, and ignore terms of order 2. Then

D(gg'g™") =D(g(I+tX)g™")
=D(I +tgXg™")
=1+ td(ng_l)

whereas
D(g)D(g')D(g)~" = D(g)(I +td(X))D(g)~"

— I +tD(g)d(X)D(g)""

Comparing the terms of order ¢ gives the result. O
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As a special case, we consider the adjoint representation of L(G), which gives rise to the so-called
Killing form:
R(X,Y)=Tr(ad X adY)

The Killing form is real and is the most basic inner product, because every Lie algebra has an
adjoint representation. In practice, these inner products are usually related. They differ by a con-
stant multiple if L(G) is “simple” (to be made precise soon).

The infinitesimal version of the invariance above is the associativity property:

Claim: (X,[Y, Z])q = ([X,Y], Z)a

Proof. (For the initial inner product in this section)
Te(X, [V, Z]) = Te(XY Z) — Te(X ZY) = Te(XY Z) — Te(Y X Z) = Tr([X, Y]Z) O

What does this have to do with an infinitesimal version of the invariance under the conjugation
X = gXg'? If welet g =1 +tZ € G with t infinitesimal, then we have to order :

Tr(X ) Te((1+t2)X (1 — tZ)(1 + tZ)Y (1 - tZ))
Tr((X —¢[X, Z])(Y + t[Z,Y]))
= Tr(XY) —tTr([X, Z]Y) +t Tr(X[Z,Y])
— Ti([X, Z)Y) = Te(X[Z,Y])

which is just the associativity property.

8.2 Non-Degeneracy of the Killing Form

Let {T;} be a basis for L(G). The Killing form becomes a symmetric matrix with components
kij = k(T;, Tj) = Tr(ad T; ad T})

Now adT; is defined by (adT;)X = [T;, X], where X € L(G). Let X = X;T; (basis expansion).
Then
(ad 1) X = [T3, XiTi] = Xi[T3, 1] = cu XiThy = (ad i)t = cark

Although the indices look a bit strange in the final equality of the last line, they are in fact correct.
Therefore we have Tr(adT; ad Tj) = (ad T;)w(ad 7)1 = cuncjrr. So the (i7)™ component of the
Killing form is given by:

Rij = CilkCjkl
Ezample. For the standard basis of su(2), kqp = €qdc€bed = —20qp. This is a non-degenerate Killing
form.

Definition 28. The Killing form r;; is non-degenerate if all of its eigenvalues are non-zero. Equiv-
alently, det k;; # 0 and &;; is invertible, since det k;; = [[ A;, where \; are the eigenvalues.

Definition 29. A Lie algebra L(G) is said to be semi-simple if its Killing form is non-degenerate.

Theorem 8.2.1. A semi-simple Lie algebra L(G) has a decomposition into mutually commuting
simple factors L(G;) such that

L(G) = L(G1) ® L(G2) ® - -- ® L(Gy)
and L(G) cannot be reduced further.
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Proof. Omitted (but see Example Sheet 4, Problem 6 for some related details). The general idea
is that a non-degenerate Killing form gives a way to build “orthogonal complements,” which leads
to a direct sum decomposition of the Lie algebra. O

Fact: In the case of L(G) semi-simple, the associated group G has the structure
G =Gy x Gg X - -+ x Gy /{discrete group}

where G; are simple Lie groups. (Note: A simple Lie group is a connected, non-abelian Lie group
with no (proper) normal Lie subgroups.)

8.3 Compactness

If ki; is negative definite, L(G) is said to be of compact type. G is then a compact group (as a
topological manifold). For example, SU(n) is simple and compact. In the case of L(G) of compact
type, we can find an adapted basis {T;} such that k;; = —pud;;, for some constant p > 0.

Then w(Ti, [T}, Tx]) = w(T3, cjiTh) = cjririn = —pcjri, and w([Ti, Tj], Tx,) = w(cijTi, Tk) = cijik =
—pcijk. Thus by the associativity property we have:

Cijk = Cjki = Ckij = —Cjik = —Ckji = —Cikj
In other words, the structure constants are totally antisymmetric in the adapted basis.

We can now clarify why gauge groups are chosen to be compact. If L(G) is of compact type then
the Yang-Mills Lagrangian density
Lyv = K(EF, F')

is gauge invariant because of the G-invariance of x, and has positive kinetic terms (remember the
extra minus sign from lowering Lorentz indices). For a simple matrix group G, this density is a
positive multiple of Tr(F,, F*”). (Non-compact groups have Killing forms x of mixed signature,
which would lead to unphysical negative kinetic energy in some cases; as k is not positive definite,
we cannot just flip the sign.)

8.4 Universal Enveloping Algebra

In a matrix Lie algebra L(G), we can deal with a product XY (which isn’t necessarily in L(G)) as
well as the commutator [X,Y] (which is in L(G)). In an abstract Lie algebra L, we can define the
universal enveloping algebra (UEA) to be the formal span of {1,L,LQ L, L L® L, ...}, allowing
sums and products of elements of L. The UEA is subject to the one rule: XY — Y X = [X,Y], as
defined in L.

(a) In the UEA we see that there are new identities, e.g.

(X,YZ|=XYZ-YZX=XYZ-YXZ+YXZ-YZX
= [X,Y]Z+Y[X, Z]

(b) We have
1
epr:1+X+§X2+-~€UEA
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Thus the connected component of G is in the UEA of L(G). (Note: This is a bit of a white lie,
as the UEA technically only contains finite sums, while the definition of exp involves infinite
sums. However, we assume that the idea may be extended in a more careful treatment to
include a “formal completion of the UEA”.)

(c) There is an analogy between a UEA and the Dirac matrix algebra, which is the span of
{I,A*, A*~y"  yH~Y~7, ...} subject to the constraint y#~" + ¥~y# = 2nHV].

One can extend an N-dimensional representation d of L to the UEA in the obvious way (replace
X by d(X) and 1 by Iy). All elements are now N x N matrices. Usually there are additional
identities satisfied by the matrices d(X) which are not universal. It is important not to be deceived
by these. E.g. (01)? = I for the Pauli matrix o7 does not imply that (77)? is a multiple of 1 in
the UEA of L(SU(2)).

8.5 Casimir Elements

Let L(G) be a Lie algebra of simple (irreducible in the sense that it isn’t a direct sum of mutually
commuting subalgebras) compact (k;; negative definite) type with adapted basis {7;} such that
kij = —0;j. Here the basis elements are normalized so that ;1 = 1.

Definition 30. The universal (quadratic) Casimir element in the UEA is C' = ). T;T;.

Lemma 8.5.1. [X,C] =0 for all X € L(G), i.e., the Casimir commutes with every element in the
Lie algebra:

Proof. 1t is sufficient to set X equal to the basis element 7j.

[Tj7 Cl = Z[TﬁTlTZ]

= (T[T}, Ti] + [T}, TiT,)

= Z(Ticjika + cjiTiT;)

(2

= ¢jin(TiTy + T Ti) = 0

7

where the last line follows because the antisymmetric structure constants (adapted basis) are con-
tracted against a symmetric quantity. O

It follows that the Casimir C' is a central element (commutes with everything) in the UEA. How-
ever, this does not mean that it is a fixed multiple of 1. (The UEA has as further central elements
all polynomials in C. It may have yet more independent central elements, higher Casimirs, but
these depend on the detailed form of L(G) and do not have a universal form.)
Consider now C' in a representation d of L(G) of dimension N:

Cy =Y d(T)d(T;),

i

where Cj is now an N x N matrix. By the same proof as above, [d(X),Cy] = 0,VX € L(G).

Claim: If d is irreducible, then by Schur’s lemma Cy = cq4ln.
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Proof. Example Sheet 3, Exercise 7 O

Here the Casimir eigenvalue ¢4 is a useful way to characterize the irreducible representation d.

Ezample. Consider the fundamental (j = 3) representation of su(2). The adapted basis is T, =
——1_0, (notice the factor of v/2). Then:

2V2
Ciny =Y (T.)* = 1§ 2_ 3
(=1 = (To) =73 Ua—_g 2.

a

Thus Clj=1) = —%. More generally, consider the well-known angular momentum operators Ji, Ja, J3
2

from physics. They have the Casimir operator:
1 1
C= —§J2 = —§(J12 + J3+ J2)

Quoting a familiar result, the eigenvalue in the spin j irreducible representation is ¢(;) = —% Jj+1).

8.6 Metric on ¢

(Note: In what follows the assumption that G is a simple Lie group is non-essential, but with this
assumption the metric we find is unique up to a constant multiple. The assumption of compactness
gives a Riemannian metric. Otherwise we can wind up with a Lorentzian metric, for example.)

Suppose G is a simple matrix Lie group with Lie algebra of compact type. Let X,Y € L(G) be
tangent vectors at I. Define (X,Y) = —Tr(XY). Up to a constant multiple, this is the unique
positive definite quadratic form on L(G) which is also invariant under the action of conjugation on
X,Y by G. We can use this quadratic form to define a Riemannian metric on G:

ds® = —Tr ((dg)g~ " (dg)g™") (8.1)

where dg is an infinitesimal tangent element to G at g. By the argument used previously leading
to (3.2), we see that (dg)g~! € L(G). ds? is interpreted as the squared length of dg.

g+dg

Note: We must use g~ to map dg back to the identity, where we can use the Lie algebra inner
product (, ).
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If we’re near the identity, g = I and g + dg = I + dX, where dX is an infinitesimal element of
L(G). Then (dg)g~! = dX and ds? = — Tr(dXdX).

A natural question to ask is how this metric behaves under the left and right actions of G. If
99199 ", dg— qidgg;’
with g1, g2 constant, then dgg~"' glclggflgl_1 and
ds® = —Tr(g1dgg g7 'g1dgg~'g; ") = — Tr(dgg™'dgg™") = ds*

(dg transforms like g because it is the difference of two infinitesimally separated group elements.)
Thus we’ve found that our metric is invariant under the action of G X G on G such a metric is
sometimes called a bi-invariant metric. This metric is highly symmetric and unique up to a scalar
multiple.

Note: The high degree of symmetry is clear from the above discussion, but we haven’t shown
uniqueness.

8.7 Kinetic Energy and Geodesic Motion
For a particle moving on G along the trajectory g(t), we can define the kinetic energy:
T=-Tr (gg_lgg_l) , with g = dg/dt

and the action: ,
1

S = /Tr (gg_lgg_l) dt
to
The stationarity condition 65 20 gives %(g_lg) = 0 as the equation of motion (Example Sheet
3, Problem 9). As the action is defined using the metric on G, and is purely kinetic, solutions
correspond to motion along geodesics at constant speed.

If we integrate the equation of motion once with respect to time, we see:

919 = X = const. € L(G)
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The function ¢(t) = exp(tXp) is a solution with g(0) = I. It is easy to check this if one recalls
that exp(£tXp) and Xy commute. The general solution is a left translation of this special solution
given by g(t) = goexp(tXy), where Xog € L(G), go € G are both constant. We can check that this
does in fact solve the differential equation:

g(t) = goXoexp(tXo), so
9719 = (90 exp(tXo)) ™" goXo exp(tXo)
= exp(—tXo)gy g0 X0 exp(tXo)
- X,

Remark: Geodesic motion possesses enough symmetry in this case that it is completely integrable.

8.8 SU(2) Metric and Volume Form

Recall (from example sheets) the following parametrizations of SU(2) as a 3-sphere:

U— (ao +ia3 ia; + a9

. ), withad +a@-d=1
a1 — a2 apg —1as

_(a B : 2 2 _
U_<—,8* a*>,W1th |Oé’ +’/6‘ =1

(These parametrizations are really the same and in fact give a quick way to recall explicit forms for
the Pauli matrices.) We know that an SU(2) x SU(2) invariant metric on SU(2) is SO(4) invariant.
This fact follows because we showed that so(4) = su(2) @ su(2). The bi-invariant metric on SU(2)
is therefore the round metric on S3:

ds® = da? + dd - dd, restricted to S°
ds* = dada* + dBdS*, with the restriction |a|? + |3]* =1
Exercise: (Example Sheet 4, Problem 2) Show that ds? = —3 Tr ((dU)U~1(dU)U ).

8.8.1 Euler Angle Parametrization

Let o = cos S exp (4(¢p+v)), B =sin§exp (3(—¢ +v)), with 6 € [0,7], ¢ € [0,27], ¥ € [0,47]. If
one computes the differentials da and dg, one finds after a few lines of algebra that:

1
ds? = dado™ + dBdp* = Z(de2 + d¢* + dyp* + 2 cos 0 dpda)

This is the round metric on S? in terms of Euler angles (cf. Landau and Lifschitz Vol. I for more
discussion). The metric tensor is therefore:

1 1 0 0
Guv = 1 0 1 cos
0 cosb 1

The volume form is dV' = /det g, dfdpdyp = %sin& dfdeody. Using it, we can compute the total
volume of SU(2):

1
V= 3 / sin 0 dfdédi) = 27>
(Note: The volume form is useful in gauge theory quantization. Like the metric, the volume form

is bi-invariant. In general a volume form on a differentiable manifold M is a nowhere-vanishing

differential form of top degree. On a manifold M of dimn, a volume form is an n-form, a section
of the line bundle Q" (M) = A™(T*M).)
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Chapter 9

SU(3) and its Representations

9.1 Roots

Recall the brackets of the SU(2) Lie algebra su(2):

[h.et] = et
[h,e_] = —e_
ler,e_] =2h

where {ex,h} is a basis for (complexified) su(2). Recall that su(3) consists of traceless, anti-
hermitian 3 x 3 matrices. A convenient basis (and one with similarities to the basis for su(2) above)
for the complexified su(3) (i.e., for su(3) ® C) is:

0 00 0 01 000
eg=10 0 0],ey=10 0 0),e_,=(0 0 O
010 0 00 1 00
and two in the span of
1/2 0 O 0 0 0 /2 0 0
ho=| 0 —=1/2 0|,hg={(0 1/2 0 shy=10 0 0
0 0 O 0 0 -—1/2 0 0 —1/2

With these definitions, we have the following commutation relations (among others):

[hou eoc} = €a
[hou e—oz] = —€_q
[eq,e—a] = 2hq
These are precisely the commutation relations fulfilled by su(2). Thus {eq, €_q, ho} is the basis of

an su(2) subalgebra, and similarly for 3,v. However, ho + hg = h,, so these subalgebras are not
linearly independent. We can choose a basis for the diagonal matrices:

12 0 0 L (12 0 0
hi=(0 =1/2 0|, ha=—|[ 0 1/2 0
0 0 0 v3lo o -

49



Part IIT Symmetries, Fields and Particles Section 9.1

They are orthonormal in the sense: Tr(h,2) = Tr(hy?) = 1/2 and Tr(hihg) = 0. We write h =
(h1,h2) as a vector and define:

a=(1,0)
7= (1/2,V3/2)
Using this notation we see:
a-h=(1,0)- (hi,ha) = h1 = hq,
B-h=(=1/2,v/3/2) - (h1,hs) = —1/2h1 + V/3/2 hs
-1/4 0 0 1/4 0 0
= 0 /4 0+ O 1/4 O = hg
0 0 0 0 0 -1/2
Yh=(1/2,v/3/2) - (h1,hs) = 1/2h1 +V/3/2 hy
1/4 0 0 1/4 0 0
=0 -1/4 0y+( O 1/4 O = h,.
0 0 0 0 0 -1/2

We can verify, and write compactly:

27 2
- - 1 V3 ,
[h,e5] = (ad h)ey = (27 2) €y = T€y
Note that [ha,ea] = [ -k, eq] = (@ - @)ea = €q as |@| = 1. In other words, all of this notation is

consistent. This notation leads to the root diagram of su(3):

™y
=2

Q
2

Figure 9.1: The root diagram of L(SU(3))

50 Typeset by W.I. Jay



Part IIT Symmetries, Fields and Particles Section 9.2

+&, +3, £7 are the roots of su(3). (In this case they are of unit length.) The negative roots are
included because:
[e—as€a) = —2hq =2h_q =2(—3d) - h

and so on. su(3) is said to have rank 2. The rank is the dimension of the maximal commuting
subalgebra (the Cartan subalgebra, or CSA), which is here spanned by h; and hy. The root diagram
is two-dimensional. su(3) has three (special) su(2) subalgebras, one for each pair o, £, £v. There
are also further brackets that we have not yet given, e.g.,

Remark. We show below that these roots are consistent with our previous definition of roots as
non-zero eigenvalues of the Cartan subalgebra in the adjoint representation.

9.2 Representations and Weights

Suppose d is a representation of su(3) acting on V. Let hy and hy be as before. Then d(h;)
and d(hg) commute (as h; and he commute) and can be simultaneously diagonalized. Thus V
decomposes into subspaces. Let

V)\L)\Q = {U eV d(hl)v = )\lv}

(i.e., Vi, .\, is the span of the simultaneous eigenvectors belonging to eigenvalues A\; and Ay of d(h1)
and d(hs)). We can simplify notation by writing & = (hy, hg), X = (A, A2). Then

Vi = {veV:dh)w= v}
If V5 is a non-zero subspace, we say that Xis a weight and Vx is a weight space for d.

Example: The fundamental representation of su(3).
The fundamental representation of su(3) is 3-dimensional, and

1/2 0 0 L (12 0 0
hi=|0 —1/2 0], ha=—=| 0 1/2 0
0 0 0 V3o o -1

are diagonal. Thus we can immediately read off the eigenvalues and hence the fundamental weights:

(o) (rza) (0 35)

The weight spaces are clearly one-dimensional and given by:

c 0 0
O, {c], |0
0 0 c

We can show the weights on the root diagram; they form an equilateral triangle:
Note: We have three weights since the fundamental representation is 3-dimensional. Each weight
is a 2-vector, since the Cartan subalgebra is 2-dimensional.

51 Typeset by W.I. Jay



Part IIT Symmetries, Fields and Particles Section 9.2

X : weights

=
]

Q1

Figure 9.2: Sketch of root diagram of L(SU(3)) along with the fundamental weights

9.2.1 General Constraint on Weights

We saw previously that {eq, €_q, ho} span an su(2) subalgebra of su(3). By restriction, we see that
the representation d of su(3) gives a representation of su(2) acting on V. From our experience with
SU(2) theory (angular momentum), we know that d(h,) has half-integer or integer eigenvalues. If
v € Vi, then

d(hq)v

U

= d(a@- h)v
= @ - d(h)v, by linearity

= a- Av, since v € Vs

Our experience with SU(2) theory therefore tells us 2@ - X € Z.
The same argument and result holds for any root ¢ (i.e., £&, 8, £7) of su(3). Thus the weights
A, for any representation d of su(3) are constrained by

2%-XNeZ (9.1)

where & runs over all roots.
The possible weights therefore form a lattice. A pair of basis lattice vectors are w; = (%, ﬁ) and

Wo = (0, %), which satisfy:

2 - W1

2G - Wy = 0
26 -0 =0
26 -y = 1

(Check using the definitions of &, 5) A general weight is X = n1wWi + nowWe, where nq,ny € Z. This
satisfies the constraint equation (9.1) for S=d&andd= E, and for § = ¥y=a+ 5

The collection of all possible weights is the weight lattice. The weights of d = ad (the adjoint
representation) are the roots together with 0 (with multiplicity 2). They are shown by the circles
in the lattice.
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X X X
X X

X X X
) i

X X
X wg

% ok” w1 %
X X

X X X
® )

X X X
X X

X X X

Figure 9.3: The weight lattice

Roots are weights, since ad is of course a representation. In the case of su(3),
(ad h1)erq = [h1,exa] = tetn
(ad ha)erq = [ha,€xq] =0
— (ad h)esq = (£1,0)e1q, which just says that +@ is a weight pair.
Similarly, we see the other weights are determined according to:
(ad h)ers = (F1/2,+£V3/2)ess = £fesp
(ad h)esy = (£1/2, +V3/2)es, = +7es,
(ad h)hy = 0
(ad h)hy = 0
Thus ad has eight weights {£da, :l:g, +7,0,0}.

9.2.2 Weights of some Irreps of su(3)

For a given representation, the weights belong to the weight lattice. They must also form complete
strings of weights for each su(2) subalgebra. (The su(2) weights are read off along the lines parallel
to the directions of &, 3 or 7.) Weights of some irreps of su(3) are given in Fig. 9.4. The label of
each irrep indicates its dimension.

9.2.3 Conjugate Representations

The fundamental representation of SU(3) is D(U) = U. The conjugate representation is D(U) =
U*. This defines a representation because UjUy = U3 — U;U; = U;. We may also consider the
associated representations of the Lie algebra su(3):

Fundamental: D(I+X)=I1+X,s0d(X)=X
Conjugate: DI+ X)=I+4+X*s0odX)=X"
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3 6 1
X X X
X X
X
X X
X
X
10 8
X X X X % %
X X X X XX X
X X % %
X

Figure 9.4: The weight diagrams for some irreducible representations of L(SU(3))

Since X € su(3), it is antihermitian and thus has imaginary eigenvalues: Xv = ipv, u € R. Then
for the conjugate: X*v* = —iuv*, and so we see that the eigenvalues change sign. Now we move
to the complexification su(3) ® C, i.e., we now allow for complex linear combination such as e, hq,
and so on. The weights still change sign. The weight diagrams of the fundamental irrep 3 and its
conjugate 3 are:

(%)
Il

Figure 9.5: The weight diagrams of the fundamental and conjugate representations of L(SU(3))

Note that these are different, so 3 and 3 are not equivalent. (Check that equivalent reps have the
same weights.) Compare this to the fundamental representation of su(2), which is self-conjugate.

Similarly, the conjugates of 6 and 10 are distinct, 6 and 10, respectively. However, 8 = 8 is
self-conjugate, as the representation ad involves the structure constants, which are real.
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Figure 9.6: The weight diagrams for the fundamental and conjugate representations of L(SU(2)).

9.2.4 Tensor Products for su(3)

We can construct all irreducible representations of su(3) from tensor products of 3 (the funda-
mental representation) and 3 (its conjugate) and then reducing the tensor product to irreducible
representations. One adds weights to identify the representations present in the tensor product.

Example 1: 33 =8®1

3 ®

Il
I

831

The singlet is invariant under the action of SU(3). If a tensor has the form VjUq, then the singlet

3
is 3 viug = viu.
a=1

Example 2: 3®3=6®3

X X X
X X X X
X K
X X
X
3 ® 3 = 6@3

6 is the symmetric 3 x 3 tensor, S,3, and 3 is the antisymmetric 3 x 3 tensor, A,g. Since these are
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acted upon by SU(3), they are complex.

Example 3: 3®3®3=(603)®3=(603)®8®1=100838d1

X o X
X X X
X X
xR X
X X
X

x|

X
X

6 ® 3 = 10638

10 is a totally symmetric 3-index tensor. The singlet 1 is a totally antisymmetric tensor. In terms of
three 3-vectors, the singlet is €,3,u®v?w?. The singlet is important because it is SU(3)-invariant.

9.3 Quarks

Heisenberg noted the close degeneracy (in the physical sense) of the proton and neutron masses
(p,m) = (938 MeV, 940 MeV) and observed that (with the exception of electric charge) the two par-
ticles have similar properties in nuclei. This led him to propose isospin symmetry, an SU(2) sym-
metry with (p,n) as a doublet. Isospin was confirmed by the discovery of three pions (7+, 7%, 77)
of similar mass, and interactions that were approximately SU(2) invariant. The discovery of more
particles, like (K+, K), and the new strangeness conservation led Gell-Mann to suggest a larger
SU(3)flavor approximate symmetry with SU(2)isospin @s a subgroup. The particles transforming
under the fundamental representation (3) of flavour SU(3) are now understood to be the quarks
(u,d,s), ie., (1,0,0) is identified with a u quark state and so on. All other hadrons are multi-
quark states in SU(3)gayor multiplets. Mathematically, we use tensor products to produce these
multiplets. Particles in irreducible representations have approximately the same mass, and related
strong interactions. (Different irreducible representations are not related by SU (3)gayor Symmetry.)

In the multiplets, quarks ¢ are in 3, while antiquarks q are in 3

Hypercharge

Isospin X X

XS u
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The masses of the up and down quarks (Z) are very similar (and small, on the order of a few

MeV). The strange quark (s) has a larger mass. (The Particle Data Group says 95 + 5 MeV for
the mass of the strange quark, still small compared to the proton or even pion masses.)

9.3.1 Meson Octet

The qq meson octet comes from the tensor product 3 ® 3.

X
K_ = Su FO = 53
Figure 9.7: The meson octet
This agrees with what is seen: 4 kaons (mass ~500 MeV), 3 pions (mass ~140 MeV), 1 eta (mass

~500 MeV). There is also a further singlet ' (also neutral, but heavier than n°). 7%, 1" and 7’ are
linear combinations of i, dd and s3 states.

9.3.2 Baryon Octet and Decuplet
We obtain gqq baryons in representations 8 and 10 from 3 ® 3 ® 3.

AT A* AT AtHT
X X X X
n p
X X »F PILMEEED Ve
X X X
¥ 30 »t
X X X X
AD X X .
—— —0* denotes
a resonance
X X !
= =0
— — Qf

Figure 9.8: The baryon octet and decuplet

The diagrams above are consistent with what is seen in hadron collisions and decays. The baryon
octet contains the long-lived baryons, which have spin 1/2 and decay weakly (only p is stable). The
baryon decuplet consists mostly of resonances, which are produced in, for example, pion-proton
and kaon-proton collisions. They are short-lived and have spin 3/2. The sss baryon Q= was a
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successful prediction of this scheme and is the only long-lived particle in this group.

There are three conserved quantities in the strong interactions of these particles:
e Y (related to strangeness S), hypercharge
e I3 (related to electric charge @), 3rd component of isospin

e B, baryon number

I3 and Y are the eigenvalues of d(h;) and % d(hs), respectively. The net quark numbers

Ny, = #u — #u
Ny =#d— #d
Ns = #s — #5

are all conserved under strong interactions. We also have the following relationships:

1

1 1
Iy =-N, - =N,
3 2 u 2 d
1 1 2
=-N,+-N;— =N,
3 u+3 d 3 S
2 1 1
=N, —-Ny— =
37w 3T g

S =—N,

N

Of these five related quantum numbers, only three are independent. One relation is Q) = I3 + %Y.
For the quarks, the electric charges are Q(u) = %, Q(d) = —%, Q(s) = —%. Originally thought to be
algebraic curiosities, these values have found verification from deep inelastic scattering experiments.

9.3.3 The Pauli Principle and Color

Consider AT = wuTu', consisting of three spin-up quarks. This is a |3/2,3/2) spin state and
also |3/2,3/2) isospin state. Through models, we believe that this state should have a spatially
symmetric wavefunction. Since it also has a symmetric spin and flavor state, this appears to violate
the Pauli principle for spin-1/2 quarks. This leads one to propose a further “color” label for quarks,
qv,v = 1,2,3. States such as ggq must be totally antisymmetric in color: €,,5q,,q,q-. Color algebra
motivated the SU(3) gauge theory, QCD, where color symmetry rules become a consequence of
gauge invariance. Gauge invariance of physical states also explains why only color singlet 3 ® 3
(q7), 3®3®3 (qqq), and 3® 3 ® 3 (73q) states are seen physically. Note that free quarks ¢ are not
gauge invariant. Rather surprisingly, there is no evidence for gqqqq or qqqqqq states, even though
color singlets exist here, and there are seemingly no glueballs. The dynamics of color confinement
remain mysterious.
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Chapter 10

Complexification of L(G),
Representations

10.1  L(G)®

Consider a real Lie algebra L(G) with basis {T}} and brackets [T3,T};] = c;jxTk, where c;j, € R.
Here the T’s themselves need not be real matrices, but the structure constants are real. The full
Lie algebra then consists of the real linear span of the basis matrices. The complezxification of L(G),
denoted L(G)®, has a general element > w NI, with A, € C. The bracket is unchanged:

(XT3, 15T5) = NipjcieTe

Here the real dimension doubles, while the complex dimension is the same as the real dimension of
the original Lie algebra. As we saw earlier, for the complexified algebra it is sometimes convenient
to use new basis elements that are complex linear combinations of the {7} }.

A representation d of L(G) becomes a rep d of L(G)®:

d(M\eTy) = M\ed(Ty,)

10.2 L(G)® as a real Lie algebra R{L(G)®}

The real algebra R{L(G)®} has dimension 2dim(L(G)). A basis for R{L(G)C} is given by {X} =
Ty, Yy = iT)}. (We assume here that these are all independent, i.e., that multiplication by i does
not reproduce a basis element. Abstractly, they are independent.) We have brackets:

[XZ', XJ] = Ciijk

(X3, Y] = cijiYe

Y3, Yj] = —cijn Xk

We can produce two representations of R{L(G)¢} using a representation d of L(G):

(i) d(Xk) = d(Tk)

d(Yy) = 1d(Ty).

This is effectively the representation of L(G)® we considered above.
(i) d(Xk) = d(Tk)

d(Yy) = —id(Ty).

This representation is conjugate to (i).

59



Part IIT Symmetries, Fields and Particles Section 10.3

Note that these representations preserve the brackets, as they must:
(i)

[d(X3), d(Y;)] = [d(T3), i d(T})]
= d([T3, iT3]) = d(icijrTk)
= cijkd(Yy)

[d(Y), d(Y})] = [0 d(T3), i d(T})]
= d([{T3,iT5]) = d(—cijiTk)
= —cijpd(Xk)

[d(X3), d(Y5)] = [d(T3), =i d(T})]
= d([T3, —iT}]) = d(—icijr Tk)
= ¢ijrd(Yy)
[d(Y),d(Y))] = [=id(T3), =i d(T)]
= d([—iT;, —iT}]) = d(—cijiTk)
= —cijpd(Xg)
We can combine these two types of representation via a tensor product to get a new representation.
Start with dM), d®) as irreps of L(G). The representation of R{L(G)®} = span{ X}, Y} defined by
d(Xy) = d(T) @ T + I @ dP(Ty)
d(Vy) = id D (Ty) @ T —i I © dP(Ty)
is an irreducible representation d of R{L(G)®}.

This is exactly what is needed to understand the Lorentz group and its representations, as we will
see.

10.3 Another Point of View
From the algebra R{L(G)®} we can construct two commuting copies of the L(G) algebra:

1 .
Zy, = §(Xk —iYy)

~ 1
Zr = 5 (Xk +iY3)
(Note, this uses the complexification of ®{L(G)}, which is a bit complicated.) One easily computes
the brackets and finds:
1 . ,
1

= (X, X5] = ilXq, V3] + X, Y] =[5, i)
1

= Z(Ciijk — icik Y + icjin Y + cijXk)
1 .

= §Cijk(Xk — ZYk)

= Cijk Lk,
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By similar calculations we see (Zi, Z;] = cijuZy, and [Z;, Z;] = 0. We represent {Z} using dV) and
{Z;.} using d? to get the tensor products:

d(Zy) = dD(Ty) @ T

d(Zy) = T ®dP(T)
Adding and subtracting then gives the same formulae for d(X}) and d(Y%) as above. (One copy of

L(G) and hence G acts via dV) on the first index of a tensor, the other copy acts via d® on the
second index. This point of view makes it clearer that d is irreducible.)

Example:

su(n) = {traceless antihermitian matrices}
su(n)® = {traceless complex matrices}

R{su(n)*} = span{traceless antihermitian matrices, traceless hermitian matrices}

In the last case one also obtains all traceless complex matrices, but a basis has twice as many
matrices as a basis of su(n)C, and the coefficients are real.

Remark: Previously in our discussion of su(3) we had said that the 3x3 matrices {e+q, €43, €4, ha, 3}
were a basis for su(3)C. This is consistent with the second example. The coefficients multiplying

these basis elements are complex.
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Chapter 11

Lorentz Group and Lie Algebra,
Representations

Lorentz transformations L', act on 4-vectors z# — L", 2", u,v = 0,1, 2, 3. Lorentz transformations
by definition preserve the square of the relativistic interval s? = Nuwrtz?, where 1, = nt =
diag(l,—1,—1,—1) is the Minkowski metric. The metric signature is (1,3). Preservation of the
relativistic interval is the condition:

L¥ L Ny = Nor (11.1)

which is the defining equation for the Lorentz group O(1,3). This group is a variant of O(4). Near
the group identity, L', = 6", + €l",, where ¢ is infinitesimal. Substituting this into (11.1) one
finds, collecting the terms of order e:

(l#a(sy‘r + 5lu0ly‘r)77/ﬂ/ = l“crnMT + TZO'VZVT =0

Lowering indices, we see that I, + I, = 0, i.e., | with lowered indices is antisymmetric. Thus we
may write

0 a b c

T 0 —f e
v b f 0 —d
c —e d 0

where a, b, c,d, e, f € R. The first column and the first row are symmetrically related, which comes
from raising the first index with the Minkowski metric (which flips the sign of the bottom three
rows). These matrices form the 6-dimensional Lie algebra L(O(1,3)). A basis is given by:

010 0 00 10 000 1
1000 00 0 0 000 0
E=looo0o0l' ™ 1 000]"% 0000
00 0 0 00 0 0 1000
000 O 0 0 00 00 0 0
000 O 0 0 0 1 00 —1 0
=10 00 112 o 0o oo0]"B o1 0 o
001 0 0 -1 0 0 00 0 0

The K’s are generators for the boosts, while the J’s are generators for the rotations. They are
sometimes combined into M = —M"* with M% = K, MY = €ijkJk- We have the following
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brackets of the Lorentz Lie algebra:

(i, Jj] = €ijid
[Ji, K] = € Ky,
[KZ‘,KJ‘] = _Giijk (112)

The first set are just the brackets of su(2). Note that the minus sign in the third set is critical. It
means that this is precisely the algebra of R(su(2)®) that we met previously. Note that su(2)C is

the same as sl(2;C). To construct an irreducible representation, use the spin j representation of
su(2). Let {T;,i =1,2,3} be the standard basis of su(2), and set:

dV(J;) = d9(T;)
AV (k) = +id9(T;)

With our conventions, d\¥)(T}) is antihermitian and has imaginary eigenvalues. In the second line
the plus sign corresponds to a type (i) representation of R{L(G)®} while the minus sign corresponds
to a type (ii) representation.

The general irrep of the Lorentz Lie algebra is a tensor product with spin labels (j1, j2):

dUr2) (1) = dU(T) @ I + I @ dV2)(Ty)
dU2) (K;) = i dV)(T) @ T — i I ® dY2)(T;)

The su(2) subalgebra {J;,i = 1,2,3} is represented by the standard tensor product j; ® ja.
Remark: One can also consider Z; = %(JZ —iK;) and Z; = %(JZ + iK;) in the complexification of
R(su(2)C), and then dUv72)(Z;) = d9)(T;) @ I and dU32)(Z;) = T @ dU92)(T;).

Global Aspects

O(1, 3) has four disconnected components. They are labelled by whether det L, = 1 and whether
L% > 1 or < —1. The part of O(1,3) connected to the identity has det L = 1 and L% > 1. This
subgroup is called SO(1,3)". The rotation subgroup generated by {.J;} is a copy of SO(3). True
representations of SO(1,3)" have integer spin for the SO(3) subgroup. This requires j; + jo to be
an integer (the weights of j; ® jo are then integral), e.g. (j1,72) = (0,0) or (%, %) The Lorentz
group has a double cover with spinor representations, e.g., (%, 0).

Examples of Representations

(a‘) (%70) SpinOI‘ (Spin %)
This corresponds to the fundamental representation of s((2, C).

(b) (0,3) spinor (spin 3)
This is conjugate to the fundamental representation of s((2, C).

(c) (3.%) is the 4-vector representation of the Lorentz group. Note that under SO(3) rotations,
(3,3) is reducible: é ® é = 1® 0. This corresponds to the 4-vector decomposition (2, Z).
(

Note of course that %,%) is not reducible under general Lorentz transformations.

Note: (a) and (b) are left- and right-handed Weyl spinors. A Dirac spinor is (1,0) @ (0, 1).
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Chapter 12

Poincaré Group and Particle States

12.1 Lie algebra and Casimirs

The Poincaré group (Poinc) combines Lorentz transformations and spacetime translations and
acts transitively on Minkowski space My. It is 10-dimensional. The isotropy group at one point
(e.g., the origin) is the Lorentz group, so My = Poinc/Lorentz. More explicitly, elements of the
Poincaré group are (L",, a*) and the action is # — L",x” + a*. There is a convenient 5 x 5 matrix

realization of this:
T N L a r\ (Lr+a
1 0 1 1) 1

where x and a are column 4-vectors and the above matrices are in block form. Using this realization,
group multiplication is given by:

L o\ (L o\ (LL Ld+a

0 1 0o 1) \0 1
Both the Lorentz group and the translation group are subgroups of the Poincaré group, but they
do not commute. The Lie algebra L(Poinc) has the basis:

- MP 0\ 4 0 PT
pPo __ T _
=00 =)

where (MFP7)%; = 1§75 — n?@6"5 and (P7)# = 578, (Note, the indices p, o, T label the 10 basis
matrices — the matrix indices are «, . The matrices M*’ encode what we previously presented as
the matrices Ji and Kj.)

The brackets for the Poincaré Lie algebra are the following:
[ Mpa’ Mw] =" MPE — neT MoH + nPH MOT — nH MPT
(517, P7) = 4" PP — " P
[PT,P*] =0
The first equation is equivalent to the brackets given earlier for the J’s and K’s. The third is
obvious: translations in flat space commute. The second equation isn’t immediately obvious, but

may be quickly verified using the matrix form for the basis elements. From now on we omit the ~
and think of the basis elements and their brackets abstractly rather than using 5 x 5 matrices.
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Since the Poincaré Lie algebra is not semi-simple, the Killing form is not useful (it is degenerate).
However, we do have the following Casimirs in the universal enveloping algebra (i.e. commuting
with both the M and the P generators):

P? = P,P" (a quadratic Casimir)

W? =W, W* (a quartic Casimir)
where W, = %EWPTM YPPT. Here, the symbol €., is Lorentz invariant (for the subgroup with
det L = 1), totally antisymmetric, and its normalisation is fixed by €gi23 = 1. W, satisfies

W, PF = €, M"PPTPF = 0, as P"PF is symmetric in the indices 7, while € is totally anti-
symmetric.

12.2 Representations

The Poincaré group has finite-dimensional representations (e.g., the five-dimensional representation
above), but these are not unitary! In quantum mechanics and quantum field theory, particle states
transform under symmetries by unitary operators. Thus we need unitary irreps of the Poincaré
group, which will necessarily be infinite-dimensional. We’ll find these as induced representations of
Poinc acting on spaces of functions over the homogeneous space My = Poinc/Lorentz.

12.2.1 General Idea of Induced Representation

Consider the space of scalar functions ®(m) defined on an orbit (coset space) M = G/H of G,
where H is the isotropy group at some basepoint mg € M. We can define an infinite-dimensional
representation D of G using the definition

(D(9)®)(m) = (g~ (m))

(i.e. the transformed function at m has the value of the original function at the point mapped to m).

D is a representation as it is linear in ® and the composition rule is satisfied:

(D(g192)®)(m) = @ (g5 g7 ' (m))

= (D(g2)®)(g; ' (m))
= (D(g1)D(g2)®)(m)
Note that H acts trivially at mg:

(D(h)®)(mo) = ®(h™"(mo)) = D(mo)

which is why we regard ® as a scalar function.

We can generalise this construction to a space of vector functions ¥(m) taking values in a vector
space V. It is necessary that there is a finite-dimensional representation D of H acting on V. Now
H acts non-trivially at my:

(D(h)¥)(mo) = D(h)¥(mo)

The full action of G is defined in the following way:
(D(9)®)(m) = D(h(g,m))¥ (g~ (m))
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The interesting new ingredient is the H-valued function h(g,m). What is this? There is some
freedom in fixing it. If one checks the composition rule one finds that h(g,m) has to satisfy the
cocycle condition

h(g1g2,m) = h(g1,m)h(g2, g " (m))

If h(g,m) doesn’t depend on the second argument (m) then this simplifies to the condition for a
homomorphism from G to H. But one usually cannot impose this simplification. Generally, the
cocycle condition is solved as follows. One chooses, in a way depending smoothly on m, an element
go(m) of G that maps m to mg. This exists if the action of G is transitive, but is not unique be-
cause one can follow go(m) by any element of H. A further condition one imposes is that go(mg) = I.

Now notice that for any g and m there are two routes from g~'(m) to mg. One route is by
go(g~t(m)), and the other is by g followed by go(m). These differ by some element of H, which is
the function h(g, m) we want. Thus we define

h(g,m) = go(m) g go(g~ ' (m))~"
One can check that this formula satisfies the cocycle condition. It also simplifies in the way one
wants when g € H and m = my.

The result is that D is again a representation of G. It is called the representation of G induced
from the representation D of H. Usually one supposes that D is irreducible.

12.2.2 Application to Representations of the Poincaré Group

The functions spaces above (scalar ® or vector ¥ on My) lead to reducible representations of Poinc.
To obtain irreducible representations one needs to impose an additional linear, Poincaré-invariant
condition. For a scalar function ®(x) one may assume it obeys the Klein-Gordon equation

9,0"® + M*® =0

The space of solutions is built up from simple exponentials exp(ikz) = exp(ik,z*) with k? = M2
Under the translation by a, exp(ikz) — exp(ik(x — a)) = exp(—ika)exp(ikxz). Thus we get a
1-dimensional irreducible representation of the translation group labelled by £, i.e., momentum.
Under a Lorentz transformation z + Lz we have exp(ikz) — exp(ikL~'z) = exp(i(kL~1)z). In
indices, k,z* — k(L™ 2" = (k,(L™1)",)2”. In other words, k undergoes a Lorentz transforma-
tion. However, as a Lorentz scalar, k? = kyk* is conserved. Thus in an irreducible representation
we can fix k? = M?. (Note that M? is the eigenvalue of the Casimir P2.) The following space of
functions transforms irreducibly under the Poincaré group:

B(z) = / FR)OT (k2 — M2) exp(ik) d'k

where f(k) is an arbitrary (well-behaved) function. (As we’ve seen in quantum field theory, the
d-function may be integrated out in integrals like these, leaving an integral over 3-momentum.) f is
really a function on H*, the hyperboloid k? = M? with kg > 0 in k-space. Thus we shift our focus
from My to H*. The above function space can be thought of as a space of classical functions, but
it is also a space of relativistic wavefunctions, that is, positive-energy 1-particle states for a scalar
particle of mass M.
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12.2.3 Irreducible Representations with Spin

We can extend the above discussion to allow f to be valued in some vector space V. The key idea
is the following: H™ is a coset space for the Lorentz group:

HT = S0(1,3)1/50(3)

where SO(3) is the isotropy group of k* = (M, 0). We now apply the idea of an induced representa-
tion to this coset space. For an irreducible representatlon of the Poincaré group, we need SO(3) to
act irreducibly on the vector-valued function f (M 0) Thus f is a state with definite spin Jj (integer
or half-integer). The basis states f at k = 0 are labelled by jand js € {—j,—j+1,....5—1,5}. (J3
is an eigenvalue of iJ3 in the chosen irreducible representation.)

kO

\/m

M

k

The result is a function space which can be identified with 1-particle states for a particle of mass
M and spin j. M and J are related to the eigenvalues of the Casimirs P2 and W2. (Note that 1?2
is proportional to J - J when acting on a state with momentum k* = (M, 0).)

12.2.4 Massless Case

If M = 0, the orbit of SO(1,3)" in k-space is C*, where C7 is the positive lightcone k2 =0, k° > 0
shown in the picture below. We choose as base point of C*, k# = (1,0,0,1). Then we see that
Ct = S0(1,3)'/E, where E is the non-compact 3-dimensional isotropy subgroup of (1,0,0,1). E
has the three generators K; — Js, Ko + J; and Js, as one can check using the 4 x 4 matrices for
these.

kO

C+

-
A7 k

origin/not in cone

The generators of £ have the following brackets:

[J3, K1 — Jo] = Ko+ J4
[J3, K2 + J1] = —(K1 — J2)
(K1 — Jo, Ko+ J1] =0
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which follow from (11.2). (Note in particular the final bracket, which differs from the corresponding
bracket in L(SO(3))). These are the brackets of the Lie algebra of the (special) Euclidean group in
two dimensions, which is usually called SE(2) or ISO(2). This group consists of translations in a
plane, which commute, along with rotations about an axis perpendicular to the plane which form
a compact SO(2) subgroup. Finite-dimensional irreducible representations of E are labelled by the
helicity eigenvalue js of the (hermitian) SO(2) generator i.J3, which is either integer or half-integer.
The translation generators have to act trivially, otherwise one would need to work with functions
in the plane, lying in an infinite-dimensional space. The irreducible representation of E labelled by
j3 is simply 1-dimensional:

d(K1 — Jy) =0
d(Ky+ J1) =0
d(J3) = —ij3

Thus a Poincaré irreducible representation is constructed from single-component complex functions
f (k) on C* with helicity js. J3 is the projection of the physical spin along the direction of the
spatial momentum k= (0,0,1), and js, the helicity, is the eigenvalue of this projected spin. For a
massless particle, helicity is a Poincaré invariant, so it is the projection of spin along the momentum
direction, whatever that direction is and whatever the particle energy is. There is no meaning for
spin in other directions. Examples:

e Neutrinos: helicity :l:% in the Standard Model.

e Photons: helicity £1, i.e., not 0. These correspond to photons circularly polarized in opposite
directions.
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